ORIGINAL ARTICLE

Characterization of plasma-sprayed carbon nanotube (CNT) -reinforced alumina coatings on ASME-SA213-T11 boiler tube steel

Rakesh Goyal¹ · Buta Singh Sidhu² · Vikas Chawla¹

Received: 6 October 2015 / Accepted: 4 April 2017 © Springer-Verlag London 2017

Abstract In this research work, carbon nanotube (CNT)-reinforced Al₂O₃ coatings were prepared and successfully deposited on ASME-SA213-T11 boiler tube steel. Coatings were deposited by the plasma spray process. Ni-Cr was also used as a bond coat before applying CNTs-Al₂O₃ coatings. The coatings were subjected to metallography, XRD, SEM/EDAX, and X-ray mapping analysis. The porosity of CNT-Al₂O₃ mixed coatings was decreasing with increase in CNT content. The CNTs were found to be uniformly distributed within the Al₂O₃ matrix. The CNTs were chemically stable during the spray forming. It did not react to form oxides or aluminum carbides even at the very high processing temperature.

Keywords Characterization \cdot Thermal spray \cdot Carbon nanotubes \cdot Boiler steel \cdot SEM \cdot EDAX

1 Introduction

Hot corrosion is degradation of metals at high temperature and has become an important concern due to ever-increasing global competition [1, 2]. Advancements in the development of materials have led to increase in operating temperature of gas turbines, boilers, and industrial waste incinerators [3]. The use of low-grade fuels along with high temperature has accelerated the phenomenon of hot corrosion [4–6]. The problem of hot corrosion was taken for the first time in the 1940s as a

Rakesh Goyal rakeshgoyal6@gmail.com; rakesh.goyal@chitkara.edu.in serious problem with the degradation of boiler tubes in the steam-generating plants [7, 8]. A case study revealed that out of 89 failures of boiler tube in 1 year, 50 failures were due to hot corrosion by ash [9].

Plasma spraying is a commonly used manufacturing coating technique to change surface properties of metals and alloys. Plasma spray technique has the advantage of depositing metals, ceramics, and a combination of these and can generate homogenous coatings with desired microstructure on a wide range of substrate materials [10]. Plasma spraying is a wellestablished thermal spraying technique to apply coatings for improving corrosion resistance on boiler components [11-13]. Plasma-sprayed coatings of various ceramic materials such as alumina (Al₂O₃) and calcia (Ca)-stabilized zirconia (ZrO₂) have been developed for various high-temperature applications [10, 11, 14–17]. Alumina is an exceptionally important ceramic material with high hardness, chemical inertness, and high melting point and can retain up to 90% of its strength even at 1100 °C [18]. It is reported that the corrosion resistance of alumina coatings is higher than that of cermet and metallic coatings [19, 20]. Because of the spraying process, the thermal sprayed coatings contain cracks or voids at splat boundaries, and these coatings are attacked through these voids [21-23]. Therefore, researchers are still interested in developing new coating materials for enhanced corrosion resistance at high temperature [24].

A new era of interest in the field of nanotechnology began with the invention of carbon nanotubes (CNTs) in 1991 [25–27]. CNTs are 100 times stronger than the high-grade carbon steels and have exceptional thermal and electrical properties [28–32]. These properties of CNTs make them potential reinforcement for the composite materials and many authors have used CNTs as reinforcements for composite materials [24, 33–35]. Guo et al. [36] have deposited CNTs on the micropunches of WC/Co, which successfully increased the

¹ Mechanical Engineering department, I.K.G. Punjab Technical University, Kapurthala, Punjab 144603, India

² M.R.S. Punjab Technical University, Bathinda, Punjab 151001, India