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Abstract The forced vibrations of axisymmetric inho-

mogenous isotropic viscothermoelastic hollow cylinder

under periodic dynamic pressure have been studied. The

material was taken inhomogenous due to easy exponent

law in radial direction. By applying time harmonics vari-

ation technique, the partial differential equations were

converted into ordinary differential equations. These ordi-

nary differential equations were solved by applying series

solution of matrix Fröbenius method analytically to rep-

resent displacement, temperature and stresses. Numerically

simulated outcomes were presented graphically to express

the effect of functionally graded material disk for different

values of grading parameter. With the increase in value of

grading index, variation of field functions go on decreas-

ing. The variation of field functions show high variation in

homogenous materials in contrast to low variation in

inhomogeneous materials.

Keywords Forced vibrations � Dynamic pressure �
Inhomogenous � Fröbenius method � De-hoop stress

1 Introduction

Functionally graded materials (FGMs) also known as gra-

ded materials are generally many-sided phase composites

having continuously changing properties. Depending on

the positions of the material, the properties of these

materials are not uniformly distributed across the whole

material. Chen [1] had studied the problem of elastic

medium based on spherically isotropic material bounded

by two concentric spherical surfaces. Honarvar and Sinclair

[2] have derived mathematical expressions for plane

acoustic waves in transversely isotropic elastic cylinder.

Dai et al. [3] presented numerical method to analyze the

elasto-thermodynamic long hollow cylinder prepared by

functionally graded materials in radial direction under

symmetric mechanical and thermal loads. Keles and

Tutuncu [4] have studied the free and forced vibration

analysis of functionally graded transversely isotropic

elastic hollow cylinder in radial direction by using easy

exponent law and represented the stresses, displacements

and temperatures under dynamic loads. Othman et al. [5]

have presented a mathematical model based on normal

mode analysis in which two-dimensional viscothermoe-

lastic (VTE) problem has been investigated in the medium

with two relaxation time parameters for the temperature

distribution, thermal stresses and the displacement

components.

Flugge [6] and Hunter [7] have done mathematical

models in which they utilize the dissipation factor caused

by internal energy in the vibrating viscoelastic solids. Lord

and Shulman [8] have modified Fourier law of heat con-

duction to acquire a hyperbolic equation that confesses a

finite speed of thermal signals where Green and Lindsay

[9] have demonstrated that second sound effects are short

lived and is based on the entropy production inequality.
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Sharma and Othman [10] have studied the effect of rotation

in thermoelastic plate of infinite Kelvin–Voigt viscoelastic

(VE) model for coupled and generalized theories of ther-

moelasticity. Sharma et al. [11] presented the frequency

shift and thermoelastic damping for vibration modes in

transversely isotropic solid cylinder in the context of cou-

pled thermoelasticity. Sharma et al. [12] studied thermo-

elasto-diffusion dynamic problem for infinite cylindrical

cavity and displayed analytical and graphical distributions

of displacement, temperature, concentration and stress.

Sharma et al. [13, 14] studied frequency vibrations and

damping in three-dimensional stress-free and rigidly fixed

vibrations for a homogenous isotropic, generalized vis-

cothermoelastic hollow sphere. Sharma et al. [15] studied

the free vibrations of Lord and Shulman theory of gener-

alized thermoelasticity in transversely isotropic inhomo-

geneous thermoelastic (TE) cylinder. Sharma et al. [16]

studied the generalized stress-free viscothermoelastic hol-

low sphere and presented graphically the natural frequency,

thermoelastic damping, frequency shift, temperature, dis-

placement and stresses.

Xin et al. [17] have studied the effect of volume fraction

and Poison’s ratio as well as ratio of two Young’s modulii

on the radial displacement and stresses of functionally

graded thick-walled tube subjected to internal pressure. Xin

et al. [18] discussed the problem of thermoelastic func-

tionally graded thick-walled tube based on axisymmetric

mechanical and thermal loads and presented the effect on

Poisson’s ratio of two thermal conduction coefficients on

displacement and stresses. Tripathi et al. [19] investigated

the effect of axisymmetric heat supply on thick plate of

infinite extent in the context of diffusion thermoelasticity

(TE). Khanna and Kaur [20] have analyzed coupling

problem of non-homogenous viscoelastic rectangular plate

with bipolar temperature variation with the help of Ray-

leigh–Ritz approach. Sharma et al. [21] studied the

dynamic response of functionally graded transversely iso-

tropic thermoelastic cylinders under time-dependent heat

flux. Xin et al. [22] described the elastic plastic problem of

thick-walled functionally graded tube subjected to internal

pressure on stresses and displacements and provided the

solutions in terms of volume fractions. Sharma [23] studied

the viscothermoelastic waves of homogenous isotropic

spherical curved plates and presented toroidal and spher-

oidal vibrations graphically. Sharma [24] has presented the

propagation of circumferential thermoelastic waves of

homogenous transradially and circumferential curved

plates. Xin et al. [25] presented thick-walled tube based on

Voigt method and also studied the transversely isotropic

inhomogeneous tube to produce the results for radial dis-

placement and stresses by using Mori–Tanaka method.

Tomantschger [26] has explained the series solutions

method for resolving coupled system of differential

equations in which one regular singular point involved to

explain the performance of micropolar suspension among

two coaxial cylinders. Cullen [27] has developed the pro-

cedure of convergence of matrix equations obtained from

series solution. Pierce [28] has applied normal mode

analysis to solve nonlinear differential equations. Dhaliwal

and Singh [29] have solved the elastic and thermoelastic

problems. Neuringer [30] developed the procedure of series

solution of Fröbenius method when indicial equation gave

complex roots.

Here, we present exact vibration analysis of inhomo-

geneous isotropic viscothermoelastic hollow cylinder based

on mechanical periodic-loaded boundary conditions under

dynamic pressure. The analytical and numerical results

such as displacement, temperature change and stresses

against time and normalized thickness are presented

graphically.

2 Formation of the Mathematical Model

We assume a thermally conducting functionally graded

axisymmetric isotropic viscothermoelastic hollow cylinder/

disk with domain a� r� na of outer radius and inner

radius na and a, respectively, initially at uniform temper-

ature T0. The components of displacement in cylindrically

coordinated system ðr; #; zÞ are expressed as u# ¼ uz ¼ 0

and ur ¼ uðr; tÞ, respectively. The viscothermoelastic hol-

low cylinder having governing equations of motion and

heat conduction for isotropic medium of inner radius a and

outer radius na in the absence of body forces and heat

sources are given by Dai et al. [3] and Dhaliwal and Singh

[29] as:

orrr
or

þ 1

r
rrr � r##ð Þ ¼ q

o2u

ot2
ð1Þ

1

r

o

or
Kr

oT

or

� �
� qCe

o

ot
þ t0

o2

ot2

� �
T

¼ T0b
� o

ot
þ t0d1k

o2

ot2

� �
ðerr þ e##Þ ð2Þ

where stress–strain–temperature and strain–displacement

relations are:

rrr
r##

� �
¼ k� þ 2l� k�

k� k� þ 2l�

� �
err
e##

� �

� b� T þ t1d2k
_T

T þ t1d2k
_T

� �
ð3Þ

err ¼
ou

or
; e## ¼ u

r
; ð4Þ

Here rij and eij; ði; j ¼ r; tÞ are stress and strain components,

respectively; u~¼ uðr; tÞ and T r; tð Þ are the displacement and

temperature, respectively; q;K and Ce are mass density,
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thermal conductivity and specific heat at constant strain,

respectively. t0 and t1 are the thermal relaxation time

parameters and b� ¼ ð3k� þ 2l�ÞaT is the

viscothermoelastic coupling constant. k� and l� are

viscoelastic parameters; the quantity dik; ði ¼ 1; 2Þ is the

Kronecker’s delta in which k ¼ 1 and k ¼ 2 are taken for

Lord–Shulman (LS) and Green–Lindsay (GL) theories,

respectively. The thermal conductivity, density, modulus

of viscoelasticity and viscothermoelasticity of the material

have been assumed to vary with the radial coordinate

according to exponent law as under:

k�; l�; b�; q;Kð Þ ¼ k0; l0; b
�
0; qe;K0

� � r

a

� �c
ð5Þ

where the exponent c is the degree of inhomogeneity and

k0; l0; b
�
0; qe;K0 are the homogenous components of

respective quantities. The parameters of the material have

been defined as:

k0 ¼ ke 1 þ a0

o

ot

� �
; l0 ¼ le 1 þ a1

o

ot

� �
;

b�0 ¼ be 1 þ b0

o

ot

� � ð6Þ

be ¼ 3ke þ 2leð ÞaT ; b0 ¼ ð3kea0 þ 2lea1ÞaT
be

� �

The quantities ke; le and a0; a1 are Lame’s parameters

and viscoelastic relaxation times; aT is the coefficient of

linear thermal expansion of the material.

Substituting Eqs. (5)–(6) via Eqs. (3)–(4) in Eqs. (1)–

(2), we obtain:

be
ðke þ 2leÞ

1 þ b0

o

ot

� �
1 þ t1d2k

o

ot

� �
oT

or
þ c

r
T

� �

� 1 þ d0

o

ot

� �
o2u

or2
þ m1

r

ou

or

� �
þ m0

2

r2
u

� 	

¼ qe
ðke þ 2leÞ

o2u

ot2
ð7Þ

1 þ b0

o

ot

� �
o

ot
þ t0d1k

o2

ot2

� �
ou

or
þ 1

r
u

� �

¼ K0

T0be

o2T

or2
þ m1

r

oT

or

� 	
� qeCe

T0be

o

ot
þ t0

o2

ot2

� �
T ð8Þ

rrr
r##

� �
¼ ðk0 þ 2l0Þ

r

a

� �c

1
k0

ðk0 þ 2l0Þ
k0

ðk0 þ 2l0Þ
1

0
BB@

1
CCA err

e##

� �
� b�0
ðk0 þ 2l0Þ

T þ t1d2k
_T

T þ t1d2k
_T

 !8>><
>>:

9>>=
>>;

ð9Þ

where m1 ¼ cþ 1;m0
2 ¼ � 1 � c k0

k0þ2l0

� �
;

We introduce the following quantities to remove the

complexity of above equations:

�e ¼ T0be
ðke þ 2leÞ

; eT ¼ T0b
2
e

qeCeðke þ 2leÞ
; x ¼ r

a
;

s ¼ c1t

a
;w ¼ u

a
; h ¼ T

T0

; â0; â1 ¼ c1

a
ða0; a1Þ

� �

b̂0 ¼ c1

a
b0;X

� ¼ ax�

c1

; sxx ¼
rrr
qec

2
1

; shh ¼
r##
qec

2
1

;

d0 ¼ â0 þ 2d2ðâ1 � â0Þ; d2 ¼ c2
2

c2
1

;

s0 ¼ c1

a
t0; s

0
0 ¼ c1

a
t0; s1 ¼ c1

a
t1;x

� ¼ Ceðke þ 2leÞ
K0

;

c2
1 ¼ ðke þ 2leÞ

qe
; c2

2 ¼ le
qe

;

ð10Þ

Here x� is characteristic frequency, c1 and c2 are shear and

longitudinal wave velocities, respectively. Using non-

dimensional quantities from Eq. (10) in Eqs. (7) to (9),

we obtain:

1 þ d0

o

os

� �
o2w

ox2
þ m1

x

ow

ox

� �
þ m00

2

x2
w� o2w

os2

¼ �e 1 þ b̂0

o

os

� �
1 þ s1d2k

o

os

� �
oh
ox

þ c
x
h

� �
ð11Þ

o2h
ox2

þ m1

x

oh
ox

� X� o

os
þ s0

o2

os2

� �
h

¼ eT
X�

�e
1 þ b̂0

o

os

� �
o

os
þ s00d1k

o2

os2

� �
ow

ox
þ w

x

� �

ð12Þ
sxx
shh

� �
¼ xc

1 þ d0

o

os

� �
�h 1 þ â0

o

os

� �
��e 1 þ b̂0

o

os

� �
1 þ s1

o

os

� �

�h 1 þ â0

o

os

� �
1 þ d0

o

os

� �
��e 1 þ b̂0

o

os

� �
1 þ s1

o

os

� �
0
BBB@

1
CCCA

ow

ox
w

x

h

0
BBBB@

1
CCCCA

ð13Þ

where

m00
2 ¼ c�h 1 þ â0

o
os

� �
� 1 þ d0

o
os

� �� �
; �h ¼ 1 � 2d2

� �
.

3 Initial and Regular Boundary Conditions

The medium has been considered undisturbed both

mechanically and thermally to be at rest and at initial time,

the non-dimensional initial conditions are given as:

Forced Vibration Analysis in Axisymmetric Functionally Graded Viscothermoelastic Hollow…

123

Author's personal copy



wðr; 0Þ ¼ 0 ¼ owðr; 0Þ
os

; hðr; 0Þ ¼ 0 ¼ ohðr; 0Þ
os

;

at r ¼ a; na
ð14Þ

The outer surface r ¼ n a of functionally graded

hollow cylinder has been assumed traction-free

mechanically i.e. ð rrr ¼ 0 Þ and isothermal ðT ¼ 0Þ
conditions in dimensional form. Mathematically, the

respective boundary conditions in non-dimensional form

at x ¼ n provide us:

1 þ d0

o

os

� �
ow

ox
þ ð1 � 2d2Þ 1 þ â0

o

os

� �
w

x

� �e 1 þ b̂0

o

os

� �
1 þ s1

o

os

� �
h ¼ 0; h ¼ 0

ð15Þ

While calculating subject to the conditions in Eq. (15),

the dynamic pressure rrr ¼ �QðtÞð Þ has been applied to

inner surface of the boundary ðr ¼ aÞ of hollow cylinder

(disk) which is assumed to be thermally insulated oT
or

¼ 0
� �

in

dimensional form. Therefore, mathematically the boundary

conditions in non-dimensional form at x ¼ 1 give us:

1 þ d0

o

os

� �
ow

ox
þ ð1 � 2d2Þ 1 þ â0

o

os

� �
w

x

� �e 1 þ b̂0

o

os

� �
1 þ s1

o

os

� �
h ¼ �QðsÞ

oh
ox

¼ 0

ð16Þ

The governing Eqs. (11)–(16) represent the

mathematical model of this problem.

4 Solution of the Mathematical Model

Here we apply time harmonic vibrations as used by Pierce

[28], we have:

wðx; sÞ ¼ �wðx; sÞ expðiXsÞ
hðx; sÞ ¼ �hðx; sÞ expðiXsÞ

ð17Þ

where X ¼ xa
c1
; is non-dimensional circular frequency of

vibrations. Substituting Eq. (17) in Eqs. (11)–(13), we

obtain:

r2
1 þ

m2

x2
þ iX

~d0

� �
iXm3

d

dx
þ c
x

� �

iX3m4

d

dx
þ 1

x

� �
r2

1 � X�X2~s0

� �

0
BB@

1
CCA �w

�h

� �
¼ 0

0

� �

ð18Þ

sxx
s##

� �
¼ �iXxc

~d0

d

dx
�h~a0 iX�e~b0~s1

�h~a0

d

dx
~d0 iX�e~b0~s1

0
B@

1
CA

�w
�w=x
�h

0
@

1
A

ð19Þ

where

m2 ¼ �h
~d0

c~a0 � 1

� �
; ~a0 ¼ iX�1 � â0; ~a1 ¼ iX�1 � â1;

~b0 ¼ iX�1 � b̂0;
~d0 ¼ iX�1 � d0; ~s1 ¼ iX�1 � s1;

~s0 ¼ iX�1 � s0;

s00 ¼ iX�1 � s00; r2
1 ¼ d2

dx2
þ m1

x

d

dx
; m3 ¼ �e~b0~s1

~d0

;

m4 ¼ eT
�e
X� ~b0s

0
0

ð20Þ

We introduce transformation defined by Sharma et al.

[15] as:

�wðx; sÞ ¼ x�
c
2vðx; sÞ

�hðx; sÞ ¼ x�
c
2Hðx; sÞ

ð21Þ

Using transformation from Eq. (21) in Eqs. (18)–(19)

and after simplifications, we get:

r2 1 0

0 1

� �
v

H

� �
þ iX

1

~d0

m3

d

dx

X2m4

d

dx
iXX�~s0

0
B@

1
CA v

H

� �

þ
� g2

x2
iXm3

c
2x

iX3m4

2 � c
2x

� �
� c2

4x2

0
BB@

1
CCA v

H

� �

¼ 0

ð22Þ

sxx
shh

� �
¼ �iX~d0x

�c
2

d

dx
þ m5

x

� �
iXm3

~a0�h
~d0

d

dx
þ m6

x

� �
iXm3

0
BB@

1
CCA v

H

� �

ð23Þ

where g2 ¼ c2

4
� m2; r2 ¼ 1

x
d
dx

x d
dx

� �
; m5 ¼ 1

~d0
�h~a0 � c

2

� �
;

m6 ¼ ~d0

�h~a0
� c

2

� �
.

5 Power Series Solution

Here it is to be noted that x ¼ 0 is a regular singular point

in matrix differential Eq. (22), and it has at least one

possible non-trivial solution as discussed by Tomantschger

[26] so that, we use the series solution of matrix Fröbenius

method:

vðx; sÞ
Hðx; sÞ

� �
¼
X1
k¼0

LkðsÞ
MkðsÞ

� �
xsþk ð24Þ

where s and Lk Mkð Þ0 are the real or complex eigen

values and unknown coefficients are to be determined. The
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considered domain of the problem is a� r� na; a[ 0; in

dimensional form and hence the matrix differential

Eq. (22) has domain 1� x� n in non-dimensional form.

Thus, the solution of Eq. (22) is appropriate in some

interval 1� x�R; R[ n (about origin).

Substituting considered series solution (24) in matrix

Eq. (22) and simplifying, we obtain:

X1
k¼0

1

x2
ðg1ðsþ kÞÞ2�2 þ

1

x
ðg2ðsþ kÞÞ2�2 þ ðgÞ2�2

� 	
LkðsÞ
MkðsÞ

� �
xsþk ¼ 0

ð25Þ

where

g1ðsþ kÞ ¼
ðsþ kÞ2 � g2 0

0 ðsþ kÞ2 � c2

4

0
@

1
A;

g ¼
iX
~d0

0

0 �X�X2~s0

0
B@

1
CA

g2ðsþ kÞ ¼
0 A� sþ k þ c

2

� �

B� sþ k þ 2 � c
2

� �
0

0
BB@

1
CCA;

A� ¼ iXm3;B
� ¼ iX3m4

ð26Þ

Equating the lowest power coefficient of x; ði:e:xs�2Þ in

Eq. (25) to zero, we get:

s2 � g2 0

0 s2 � c2

4

0
@

1
A L0ðsÞ

M0ðsÞ

� �
¼ 0

0

� �
ð27Þ

The matrix Eq. (27) has non-trivial solution if the

determinant of matrix equals to zero and leads to following

indicial equation:

s4 � g2 þ c2

4

� �
s2 þ g2c2

4
¼ 0 ð28Þ

The roots of indicial equation are:

s1 ¼ g; s2 ¼ �g; s3 ¼ c
2
; s4 ¼ � c

2
ð29Þ

This is to be noticed from above roots that

s1; s2; s3 and s4 satisfy the property that

s2 ¼ �s1 and s4 ¼ �s3 . The roots s1; s2 are complex

and s3; s4 are real. Thus, the leading term in the former case

in series solution (25) is of the type:

L0ðsjÞ
M0ðsjÞ

� �
xs ¼ L0ðsjÞ

M0ðsjÞ

� �
xsRþisI

¼ L0ðsjÞ
M0ðsjÞ

� �
xsR cosðsI lnðxÞÞ þ sinðsI lnðxÞÞð Þ

ð30Þ

where sR and sI are real and imaginary parts of complex

eigen values. Due to Neuringer [30], the sufficient use of

any one of the complex root of indicial equation is to locate

two independent real solutions of the system of matrix

differential equation. For the choice of indicial equation

roots from the system of matrix Eq. (27) the unknowns

L0ðsjÞ and M0ðsjÞ are chosen as:

L0ðs1Þ
M0ðs1Þ

� �
¼ 1

0

� �
;

L0ðs2Þ
M0ðs2Þ

� �
¼ 1

0

� �
;

L0ðs3Þ
M0ðs3Þ

� �

¼ 0

1

� �
;

L0ðs4Þ
M0ðs4Þ

� �
¼ 0

1

� �

ð31Þ

Again equating the coefficients of next lowest degree

term of x; ði:e: xs�1Þ in Eq. (25) to zero, we have the

following matrix equation:

ðg1ðsþ 1ÞÞ2�2

L1ðsÞ
M1ðsÞ

� �
þ ðg2ðsþ 1ÞÞ2�2

L0ðsÞ
M0ðsÞ

� �
¼ 0

ð32Þ

where g1ðsþ 1Þ and g2ðsþ 1Þ are shown in appendix

(55). On simplification of matrix Eq. (32), we find:

L1ðsjÞ
M1ðsjÞ

� �
¼ � 0 e1

12ðsjÞ
e1

21ðsjÞ 0

� �
L0ðsjÞ
M0ðsjÞ

� �
ð33Þ

e1
12ðsjÞ and e1

21ðsjÞ are defined in appendix (56). Now

equating the coefficients of like powers of xsþk in Eq. (25)

to zero, we obtain the following recurrence relation:

X1
k¼0

ðg1ðsj þ k þ 2ÞÞ2�2

Lkþ2ðsjÞ
Mkþ2ðsjÞ

� ��

þðg2ðsþ k þ 1ÞÞ2�2

Lkþ1ðsjÞ
Mkþ1ðsjÞ

� �
þ ðgÞ2�2

LkðsjÞ
MkðsjÞ

� �	

¼ 0

ð34Þ

On simplification of recurrence relation of Eq. (34), we

get the following relation:

Lkþ2ðsjÞ
Mkþ2ðsjÞ

� �
¼ � 0 gk12ðsjÞ

gk21ðsjÞ 0

� �
Lkþ1ðsjÞ
Mkþ1ðsjÞ

� �

� gk11 0

0 gk22

� �
LkðsjÞ
MkðsjÞ

� �
;

k ¼ 0; 1. . .

ð35Þ

where gk11ðsjÞ; gk12ðsjÞ; gk21ðsjÞ and gk22ðsjÞ are defined in

appendix (57) and (58).Substituting k ¼ 0 ; in Eq. (35)

and on simplification we get:

L2ðsjÞ
M2ðsjÞ

� �
¼ e2

11ðsjÞ 0

0 e2
22ðsjÞ

� �
L0ðsjÞ
M0ðsjÞ

� �
ð36Þ

Here e2
11ðsjÞ and e2

22ðsjÞ are defined in appendix (57).

Again substituting k ¼ 1; in Eq. (35), on simplification this

provides us:
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L3ðsjÞ
M3ðsjÞ

� �
¼ � 0 e3

12ðsjÞ
e3

21ðsjÞ 0

� �
L0ðsjÞ
M0ðsjÞ

� �
ð37Þ

e3
12ðsjÞ and e3

21ðsjÞ are defined in appendix (60). Again

substituting k ¼ 2; in Eq. (35) and after simplification this

is written as:

L4ðsjÞ
M4ðsjÞ

� �
¼ e4

11ðsjÞ 0

0 e4
22ðsjÞ

� �
L0ðsjÞ
M0ðsjÞ

� �
ð38Þ

e4
11ðsjÞ and e4

22ðsjÞ are defined in appendix (61). And

continue so on in this manner, it may be explained that

the matrix L2kðsjÞ M2kðsjÞð Þ0 has similar form to that

ðg1ðsþ kÞÞ2�2 and L2kþ1ðsjÞ M2kþ1ðsjÞð Þ0 is alike to

ðg2ðsþ kÞÞ2�2. Therefore, in general this is written as:

L2kðsjÞ
M2kðsjÞ

� �
¼ e2k

11ðsjÞ 0

0 e2k
22ðsjÞ

� �
L0ðsjÞ
M0ðsjÞ

� �
;

k ¼ 1; 2; 3. . .
ð39Þ

L2kþ1ðsjÞ
M2kþ1ðsjÞ

� �
¼ � 0 e2kþ1

12 ðsjÞ
e2kþ1

21 ðsjÞ 0

� �
L0ðsjÞ
M0ðsjÞ

� �
;

k ¼ 1; 2; 3. . .

ð40Þ

where e2k
11ðsjÞ; e2kþ1

12 ðsjÞ; e2kþ1
21 ðsjÞ and e2k

22ðsjÞ are defined in

appendix (62) to (65).

From Eqs. (36)–(40), we get

e2k
11ðsjÞ 0

0 e2k
22ðsjÞ

� �
¼ o

1

k

� �
A� 0

0 B�

� �
; k ¼ 1; 2; 3. . .

ð41Þ

0 e2kþ1
12 ðsjÞ

e2kþ1
21 ðsjÞ 0

� �
¼ o

1

k

� �
0 A�

B� 0

� �
;

k ¼ 1; 2; 3. . .
ð42Þ

Due to Cullen [27], the matrix sequence Gkf g in the

complex field converges, Lim
k!1

Gk ¼ G

� �
, if each of k

component sequence converges. Introducing the above fact

that both the matrices
e2k

11ðsjÞ 0

0 e2k
22ðsjÞ

� �
! 0 and

0 e2kþ1
12 ðsjÞ

e2kþ1
21 ðsjÞ 0

� �
! 0 as k ! 1. This implies

that the considered sequences in Eq. (24) are absolutely

and uniformly convergent. Thus, the considered sequence

in solution (24) becomes:

v

H

� �
¼ I �

0 e1
12ðsjÞ

e1
21ðsjÞ 0

 !
xþ

e2
11ðsjÞ 0

0 e2
22ðsjÞ

 !
x2

(

� 0 e3
12ðsjÞ

e3
21ðsjÞ 0

� �
x3 þ����

)
L0ðsjÞ
M0ðsjÞ

� �
xsj ;

ð43Þ

Here I is identity matrix of order two. Hence, the

considered sequence in series Eq. (24) and the derived

series are analytic function and having term-by-term

differentiation.

Thus, general solution of Eq. (17) with the help of

Eq. (43) via (24) is obtained as:

wðx; sÞ ¼
X1
k¼0

H1ke
2k
11ðs1Þxs1 þ H2ke

2k
11ðs2Þxs2

� �
þ H3ke

2kþ1
12 ðs3Þxs3þ1 þ H4ke

2kþ1
12 ðs4Þxs4þ1

� �
( )

x2k�c
2 expðiXsÞ

ð44Þ

hðx; sÞ ¼
X1
k¼0

H1ke
2kþ1
21 ðs1Þxs1þ1 þ H2ke

2kþ1
21 ðs2Þxs2þ1

� �
þ H3ke

2k
22ðs3Þxs3 þ H4ke

2k
22ðs4Þxs4

� �
( )

x2k�c
2 expðiXsÞ

ð45Þ

where H1k; H2k H3k andH4k are arbitrary constants to be

determined. Applying time harmonics and transformation

from Eqs. (17) and (21) on the boundary conditions of

Eq. (15) and (16), we obtain the transformed boundary

conditions in non-dimensional form as:

dw

dx
þ m5

~d0

w

x
� iXm3h ¼ 0; h ¼ 0 at x ¼ n ð46Þ

dw

dx
þ m5

~d0

w

x
� iXm3h ¼ �Q�; dh

dx
� c

2x
h ¼ 0 at x ¼ 1

ð47Þ

where Q� ¼ iX�1

~d0
Q

Using Eqs. (44) and (45) in Eqs. (46) and (47), we

obtain:

H1k

H2k

H3k

H4k

0
BB@

1
CCA ¼

e11 e12 e13 e14

e21 e22 e23 e24

e31 e32 e33 e34

e41 e42 e43 e44

0
BB@

1
CCA

�1
0

0

�Q�

0

0
BB@

1
CCA ð48Þ

where

e11 ¼ 2k þ s1 þ a�ð Þ 1

n
e2k

11ðs1Þ þ b�ne2kþ1
21 ðs1Þ

� 	
n2kþs1 ;

e13 ¼ 2k þ s3 þ 1 þ a�ð Þne2kþ1
12 ðs3Þ þ b�e2k

22ðs3Þ

 �

n2kþs3 ;

e21 ¼ e2kþ1
21 ðs1Þn2kþ1þs1 ; e23 ¼ e2k

22ðs3Þn2kþs3 ;

e31 ¼ 2k þ s1 þ a�ð Þe2k
11ðs1Þ þ b�e2kþ1

21 ðs1Þ;
e33 ¼ 2k þ s3 þ 1 þ a�ð Þe2kþ1

12 ðs3Þ þ b�e2k
22ðs3Þ;

e41 ¼ 2k þ s1 þ
2 � c

2

� �
e2kþ1

21 ðs1Þ;

e43 ¼ 2k þ s3 �
c
2

� �
e2k

22ðs3Þ;

a� ¼ ð1 � 2d2Þ ~a0

~d0

� c
2
; b� ¼ i�eX~b0~s1

~d0

ð49Þ
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The elements e12; e22; e32; e42 are written from

e11; e21; e31; e41 by replacing s1 with s2, and the elements

e14; e24; e34; e44 are written from e13; e23; e33; e43 by

replacing s3 with s4. Equations (44) to (48) represent the

formal solution of the problem, which are boundary

conditions of Eqs. (15) and (16). In this analysis, we

represent periodic dynamic pressures as given by Keles and

Tutuncu [4]. For periodic pressure, we consider the

function QðsÞ as periodic dynamic pressure

Q ¼ QðsÞ ¼ Q0ð1 � cosXsÞ ð50Þ

6 Validation of Results with Deductions

In this section, the deduction has been done for the vali-

dation of above analytical results for coupled and uncou-

pled functionally graded material viscothermoelastic and

thermoelastic cylinders by comparing with available results

in the literature.

6.1 Coupled Viscothermoelastic and Thermoelastic

Functionally Graded Cylinders

In case, the thermal relaxation time has been vanished by

taking ðs0 ¼ s00 ¼ s1 ¼ 0Þ, the quantity m3 andm4 becomes

m3 ¼ iX�1�e~b0

~d0
and m4 ¼ eT

�e iX
�1X� ~b0. Again in case of cou-

pled thermoelastic case, the relaxation time and vis-

coelastic parameters by taking ða0 ¼ a1 ¼ b0 ¼
s0 ¼ s00 ¼ s1 ¼ 0Þ, the terms m3;m4 and g2 become

m3 ¼ iX�1�e, m4 ¼ � eT
�e X

� and g2 ¼ c2

4
� �hcþ 1, so that

Eqs. (22) and (23) reduce to:

r2 þ X2 þ 1

x2

c2

4
� �hcþ 1

� �� �� 	
v� �e

d

dx
þ c

2x

� �
H ¼ 0

r2 � c2

4x2
þ iXX�

� �� 	
H� iX3 eT

�e
X� d

dx
þ 1 � c=2

x

� �
v ¼ 0

ð51Þ

sxx
shh

� �
¼ �iXx�

c
2

d

dx
þ �hþ iXc

2

� 	
1

x

� �
�e

�h
d

dx
þ 1

�h
� c

2

� 	
1

x

� �
�e

0
BB@

1
CCA w

h

� �

ð52Þ

The results of Eqs. (51) and (52) are consistent with

Sharma et al. [15] in the case of transversely isotropic

functionally graded cylinder for LS theory of generalized

thermoelasticity.

6.2 Uncoupled Viscoelastic Functionally Graded

Cylinders

Here when the media is considered either at isothermal or

at adiabatic conditions, the situations are either at thermal

equilibrium or isentropic conditions. So that we have either

eT ¼ 0 ¼ ~b0 or T ¼ 0. Thus, the solutions of Eqs. (44) and

(45) become:

wðx; sÞ ¼ x�
c
2

X1
k¼0

H1ke
2k
11ðs1Þxs1 þ H2ke

2k
11ðs2Þxs2


 �
x2k expðiXsÞ

ð53Þ

hðx; sÞ ¼ x�
c
2

X1
k¼0

H1ke
2kþ1
21 ðs1Þxs1 þ H2ke

2kþ1
21 ðs2Þxs2


 �
x2kþ1 expðiXsÞ

ð54Þ

7 Numerical Results and Discussion

To validate the analytical result of the formulation, the

numerical simulations have been presented with the help of

MATLAB software tools. Polymethyl methacrylate mate-

rial has been taken for numerical computations whose

physical data are given below with reference to Othman

et al. [5] after approximation

k ¼ 5:16 � 108 Nm�2; l ¼ 5:01 � 108 Nm�2;

q ¼ 1190 kg m�3; aT ¼ 77 � 10�6 K�1;

eT ¼ 0:045; x� ¼ 1:11 � 1011 s�1; T0 ¼ 773 K;

d2 ¼ 0:333; Ce ¼ 1400 J kg�1K�1;

â0 ¼ â1 ¼ 0:05; s0 ¼ 0:02; s1 ¼ 0:03;

K ¼ 0:19 Wm�1 K�1:

We simply solve the corresponding linear system of

Eqs. (44), (45) and (48) by MATLAB software tools and

estimate the results by the allowed error less than 10-6.

The errors in the results are negligibly small; hence, it is

not taken into consideration. The numerical data we have

taken only rounding off error in data up to six decimal

places.

The numerical calculations have been carried out by

choosing the ratio of inner radius to outer radius n ¼ 2 and

radial distance x ¼ 1:5 from the center of disk. The

numerical computations for variation of temperature, dis-

placement, radial and de-hoop stresses are demonstrated

through Figs. 1, 2, 3 and 4 against time and Figs. 5, 6, 7

and 8 against normalized thickness. The temperature

change, radial displacement and stresses are noted to

vanish initially at s ¼ 0, which agree with our assumption

of the initial boundary conditions. Figures 1, 2, 3 and 4

represent the patterns of non-dimensional temperature,

radial displacement and stresses of homogeneous ðc ¼ 0Þ
and non-homogeneous ðc ¼ 2:5; 5:0Þ materials, due to the

pressure QðsÞ with X ¼ 1:0;Q0 ¼ �e, respectively. It is

observed from Fig. 1 that amplitudes of these quantities

keep on interchanging with time for ðc ¼ 0; 2:5; 5:0Þ. The

variation in magnitude of temperature is larger in
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homogeneous case, i.e., ðc ¼ 0Þ rather than non-homoge-

neous cases, i.e., ðc ¼ 2:5; 5:0Þ, and with the increase in

time the variation of temperature decreases. It is noted

from Fig. 2 (displacements against time) that the quantities

go on interchanging with time and have larger variation at

s ¼ 4:0 for all the cases, and with the increase in value of

time, the variation of amplitude decreases. It is revealed

from Fig. 3 that the variations are sinusoidally decreasing

with time. From Fig. 4, the variations have the highest peak

at s ¼ 6:0, and with the increase in the value of s, the

variation of amplitude of de-hoop stresses for different

values of c decreases. This is to be noted that the amplitude

of all the figures shows larger variation in homogeneous

material rather than non-homogeneous materials.

Figures 5, 6, 7 and 8 display the variations of temper-

ature change ðhÞ, displacement ðwÞ, radial stress ðsxxÞ and

de-hoop stress ðshhÞ against normalized thickness

p� ¼ x�1
n�1

; n 6¼ 1
� �

(here 0� p� � 1) for different values

of c. From Fig. 5, the temperature change decreases with

the increasing values of p�. The amplitude of temperature

profile decreases due to inhomogeneity parameter and

varies according to c ¼ 5:0\2:0\0:0. From Fig. 6, vari-

ation of displacement ðwÞ increases sharply to attain its

maximum value between 0:3\p �\0:5 and decreases to

become ultimately asymptotic with the increasing value of

ðp�Þ. From Fig. 7, variation of radial stress ðsxxÞ shows

initially compressive behavior, peaking at p� ¼ 0:3, and on

further increase in p�, variations decrease. From Fig. 8, the

de-hoop stress shows the tensile behavior attains the
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maximum magnitude at p� ¼ 0:1 and becomes compres-

sive at p� ¼ 0:2, and with the increase in p�, variations

decrease and die out. From all the figures, it is concluded

that the variations are larger for homogeneous material, i.e.

ðc ¼ 0Þ in contrast with the smaller variations for non-

homogeneous materials, i.e. ðc ¼ 2:5; 5:0Þ. It may also be

observed that deformation and stress development may be

monitored (increased/decreased) as per requirement by

increasing or decreasing the value of grading index c.

8 Concluding Remarks

The extended power series solution of matrix Fröbenius

method has been applied successfully to represent the

axisymmetric forced vibrations of viscothermoelastic hol-

low cylinders under dynamic pressure. With the assistance

of non-homogeneity grading parameter, the twist (dis-

placement), change in temperature and development of

stress have been examined as per requirement. Here the

approach is well-organized and useful to represent that the

closed-form analytical solutions due to non-homogeneity

grading parameter for generalized theories of viscother-

moelasticity have considerable effect on forced vibration

characteristics. Significant effects of thermal and mechan-

ical relaxation times have been observed on viscother-

moelastic stresses, displacement and temperature

distributions. As the grading parameter increases, the

variation is noted to be lower. The results are consistent

with [4] in the absence of thermal and viscous effects.

Appendix

g1ðsþ 1Þ ¼
ðsþ 1Þ2 � g2 0

0 ðsþ 1Þ2 � c2

4

� �
0
B@

1
CA;

g2ðsþ 1Þ ¼
0 A� sþ 1 þ c

2

� �

B� sþ 1 þ 2 � c
2

� �
0

0
BB@

1
CCA;

ð55Þ

e1
12ðsjÞ ¼ A� sj þ 2þc

2

� �
ðsþ 1Þ2 � g2

; e1
21ðsjÞ ¼ B� sj þ 4�c

2

� �
ðsþ 1Þ2 � c2

4

;

j ¼ 1; 2; 3; 4:;

ð56Þ

gk11ðsjÞ ¼
iX

~d0 ðsj þ k þ 2Þ2 � g2
� � ;

gk22ðsjÞ ¼
X�X2~s0

ðsj þ k þ 2Þ2 � c2

4

� � ;
ð57Þ

gk12ðsjÞ ¼
A� sj þ k þ 2þc

2

� �
ðsj þ k þ 2Þ2 � g2
� � ;

gk21ðsjÞ ¼
B� sj þ k þ 4�c

2

� �
ðsj þ k þ 2Þ2 � c2

4

� � ;
ð58Þ
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e2
11ðsjÞ ¼ g0

12ðsjÞ e1
21ðsjÞ � g0

11ðsjÞ; e2
22ðsjÞ ¼ g0

21ðsjÞ
e1

12ðsjÞ � g0
22ðsjÞ

ð59Þ

e3
12ðsjÞ ¼ g1

12ðsjÞ e2
22ðsjÞ � g1

11ðsjÞ e1
12ðsjÞ;

e3
21ðsjÞ ¼ g1

21ðsjÞ e2
11ðsjÞ � g1

22ðsjÞ e1
21ðsjÞ

ð60Þ

e4
11ðsjÞ ¼ g2

12ðsjÞ e3
21ðsjÞ � g2

11ðsjÞ e2
11ðsjÞ;

e4
22ðsjÞ ¼ g2

21ðsjÞ e3
12ðsjÞ � g2

22ðsjÞ e2
21ðsjÞ

ð61Þ

e2k
11ðsjÞ ¼ g2k�2

12 ðsjÞ e2k�1
21 ðsjÞ � g2k�2

11 ðsjÞ e2k�2
11 ðsjÞ;

ð62Þ

e2k
22ðsjÞ ¼ g2k�2

21 ðsjÞ e2k�1
12 ðsjÞ � g2k�1

22 ðsjÞ e2k�1
21 ðsjÞ;

ð63Þ

e2kþ1
12 ðsjÞ ¼ g2k�1

12 ðsjÞ e2k
22ðsjÞ � g2k�1

11 ðsjÞ e2k�1
12 ðsjÞ;

ð64Þ

e2kþ1
21 ðsjÞ ¼ g2k�1

21 ðsjÞ e2k
11ðsjÞ � g2k�1

22 ðsjÞ e2k�1
21 ðsjÞ

ð65Þ
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