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Abstract. The aim of this article is to focus on forced vibrations due to thermal loading of functionally graded 
viscothermoelastic hollow sphere. The material has been chosen functionally graded due to easy exponent law.  The 
power series solution of matrix Fröbenious method has been applied to solve mathematical model so developed to find 
temperature, displacement and stresses. The numerical solutions are obtained using MATLAB software for polymethyl 
methecrylate material. The convergence analysis have been applied to field functions by applying series solution, so that 
these field functions are uniformly convergent and the derived series have term by term differentiation. The computer 
simulated results for displacement, temperature change, radial stress and de–hoop stress have also been presented 
graphically. By using grading index the stress development, the stresses can be made compressive as well as tensile by 
taking different values of  positive or negative. 

INTRODUCTION 

Hunter et al. [1] and Flugge [2] used a lot of mathematical models, to provide somewhere to stay the energy 
dissipation in vibrating viscoelastic solids due to internal friction. Sharma [3] had investigated a model, based on 
infinite Kelvin–Voigt wave type in coupled viscothermoelastic plate. Othman et al. [4] have expanded the analysis 
in two–dimensional thermoviscoelastic medium in which he introduced two relaxation time parameters. Kanoria and 
Ghosh [5] studied the thermoelastic functionally graded relations in spherically isotropic hollow sphere in the 
context of generalized thermoelasticity. Bargi and Eslami [6] investigated the Green–Lindsay (GL) theory based on 
functionally graded thermoelastic hollow spheres. Alavi et al. [7] studied the functionally graded thermoelastic 
sphere subjected to mechanical and thermal loadings. Akimoto et al. [8] developed a technique by using Voigt 
model to compute the shear and bulk wave velocities of a viscoelastic sphere.  Sharma et al. [9] investigated the 
stress free homogenous isotropic viscothermoelastic vibrations of hollow spheres using series solution. Akulenko 
and Nesterov [10] investigated the oscillations of in–homogenous rod based on elastic medium with inconsistent 
stiffness boundary conditions. Keles and Tutuncu [11] investigated the elastic cylinders (disks) and spheres in the 
context of free and forced elastic vibrations based on functionally graded materials. Sharma et al. [12] studied the 
free vibrations of axisymmetric functionally graded isotropic viscothermoelastic hollow sphere. Sharma et al. [13, 
14] also studied the forced and free vibrations of functionally graded cylinders in the context of Lord and Shulman 
(LS) model of thermoelasticity. Sharma and Mishra [15] developed Lord and Shulman (LS) model of 
thermoelasticity in which the free vibrations of thermoelastic responses have been  investigated due to functionally 
graded material of hollow sphere. In this paper the problem has been developed with non–classical theories of 
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thermoelasticity developed by Lord and Shulman (LS) [16] and Green and Lindsay (GL) [17]. Neuringer [18] solved 
the indicial equation in which the complex roots have been applied and obtained by using series solution of 
Fröbenius method.  

The purpose of this paper is to study analytically and numerically the exact forced vibrations due to heat sources 
of functionally graded generalized viscothermoelastic hollow sphere due to temperature input and temperature 
gradient.  The analytically modeled equations have been investigated by using series solution of matrix Fröbenius 
method to obtain solutions for displacement, stresses and temperature. The computer analyzed results for 
polymethyl methecrylate material has been shown for graphical presentation.  

FORMULATION OF THE PROBLEM 

We consider a conducting viscothermoelastic hollow sphere of outer radius la  and inner radius a  at uniform 
temperature 0T initially. The displacement in spherical coordinates (r, θ, φ) are stated as θ φu = u = 0 and 

ru = u (r, t) respectively. The governing equations of motion and heat conduction for homogenous isotropic hollow 
sphere of outer radius la  and inner radius a in the absence of body forces and heat sources in the context of 
generalized viscothermoelasticity are taken by (Love [20] and Dhaliwal and Singh [21]) 

Stress–Displacement–Temperature Relation 

 

*
1 2k* * *
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Equation of Motion 
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Equation of Heat Conduction 
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where        * * * *
0 0 0 1 0 0λ = λ 1+ α , μ = μ 1+ α , β = β 1+β ,

t t t
 

Here ijσ , i, j = r, θ  is stress component;  u(r , t)  and Τ ρ, τ  are displacement and temperature respectively; 

eK , ρ and C are thermal conductivity, mass density and specific heat at constant strain respectively;  *  and 0t , 1t  
are viscothermoelastic coupling constant and thermal relaxation time parameters. Here the quantity ikδ ,(i =1, 2) , is 
the Kronecker’s delta in which k =1is taken for Lord-Shulman (LS) theory and k = 2  for Green-Lindsay (GL) 
theory. We assume the material to be functionally graded with power law in the sense that the density, thermal 
conductivity and modulus of elasticity differ with the radial coordinates accordingly 
 *

0 e 0 e 0 e e 0r , r , r , r , K K r  (4) 
where eTeeTeee /)23(,23 100  and α  is the degree of in-homogeneity. The quantities 

0 1α , α  are the mechanical relaxation times; e eλ ,μ are Lame’s parameters and Tα  is the coefficient of linear 
thermal expansion of the material. 
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Initial and Regular Boundary Conditions 

We consider in–homogenous functionally graded hollow sphere, initially at rest both mechanically and 
thermally, which is subjected to temperature input and temperature gradient at outer radius r = la and inner 
radius r a . The initial conditions can be written as 

 

                                                 T(r , t)u(r , t) = T(r , t) = = 0 at t = 0
t

 

The regular boundary conditions are stress free with temperature input and temperature gradient at the surfaces 
of the hollow sphere, can be written mathematically  

 

 rr

1

σ = 0 , at r = a , la for t 0
T = h exp(-iΩt) , at r = a , la for t > 0

 (5) 

   r 2T, =h exp(-iΩt) , at r = a , la for t > 0  (6) 

Here 1h and 2h are dimensionless constants and
1

ωaΩ = ,
c

is the non–dimensional circular frequency of 

vibrations.  

Solution of the Problem 

To find the solution and remove the complexity of the equations, we introduce the following non–dimensional 
quantities: 

 

2T Tc t cr u T e e0 01 1ˆx , , U , , , , ;T 0 0a a a T C ( 2 ) ( 2 ) ae e e e e e0
c c c c c2 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ2 ( ) , t , t , t , , ;0 0 1 0 0 0 0 0 1 1 0 0 1a a a a a

* C ( 2 ) ( 2 )a* * 2e e e e err, , , , cxx 12 2c Kc c1 0e e1 1

2c2 2e 2, c ,2 2ce e 1

 (7) 

Using quantities (7) in equations (1) to (3) via equation (4) we get 
 

 
2 2

1 2
0 1 2k 02 2 2

ˆm mU U Uˆ1 1 1 U
x x x xx x

 (8) 

 
2 2 * 2

*1
0 T 0 0 1k2 2 2

m U 2 Uˆ1
x x x xx

 (9)

 2
xx 0 0 0 1

U U ˆˆx 2(1 2 ) 1 1 1 1
x x

 (10) 

 2
0 0 0 1

U 1 ˆˆx 1 2(1 2 ) 1 U 1 1
x x x

 (11) 

where 

 2
1 2 0 0

ˆˆ ˆm 2 , m 2 1 1 (1 2 )  (12) 

We consider time harmonic vibrations [19] and define non–homogenous transformations by 

 
1

2U(x) , (x) (w , ) x exp( i )  (13) 
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where ,
1c
a is the non dimensional circular frequency. Using these solutions (13) in equations (8) to (9) we 

obtain 
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where 
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Series Solution 

Here in the matrix differential equation (14), x = 0 is regular–singular point, therefore there must be a solution 
of the form 

 s k
k

k 0

Y Y x  (15) 

where k k kY = w Θ , Y = A B . Here s  and k kA , B are the eigen value and unknown coefficients to 
be evaluated. The problem has been solved for 0, alara and the solution (15) is applicable in some 
interval 1 x R , R > l .  

Substituting the assumed solution (15) in equations (14) and after simplification, we get  

 2 1 s kG (s k)x G (s k)x G x Y 01 2 kk 0
 (16) 

where 

2 2

2
1 2

(s + k) - n ) 0

G (s + k) = ;1+α0 (s + k) -
2

 

           

0 1

0
02 *

* 23T
04 0 0

iΩ ε β τ α -10 s + k - iΩ 02δ δG (s + k) = ; G = ;
ε Ω 3- α 0 Ω Ω τ-i Ω m β τ s + k + 0
ε 2

β0β0β0β0 kk+ k -k1τ111 ++0

δ
s +s

0δ0δ
0β0 1 s +1 s ++

β000000 0τ0τk +kk +k +0τ0 s + kk000 s + ks + k00

 

By equating to zero the coefficients of lowest power of s-2x (i.e. x ) in equation (16), we obtain the matrix 
equation: 

 

2 2

02
2

0

(s - n ) 0
A

= 01+α B0 s -
2

 (17) 

This is a non-trivial solution in system of matrix equation (17) will lead to the following indicial equation  
                                             4 2 2 2 2 2s - (n +(α +2α+1) / 4)s +n ((α+1) / 4) = 0  

The roots of indicial equation are given by  

 1 2 3 4
1 1s n , s n s , s

2 2
 (18) 
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Here the roots 1 2s and s  are complex and the roots 3 4s and s being real. The leading terms in the former case in 
the series solution (16) are of the type 
                                    Rss

0 0 0 0 I I(A B ) x = (A B ) x cos(s log x) + isin (s log x)  
To obtain real solutions of the system of matrix differential equation (16), the sufficient use of any one of the 

complex root of the indicial equation is to find two independent real solutions of the system of matrix differential 
equations, see ref. Neuringer [18]. 

For this we have the choice of indicial roots, the system of equations (17) leads to 

 0 j 0 j
1 0 0 1

A s = , B s =
0 1 1 0

 (19) 

Again equating to zero the next lowest coefficients degree term of s-1x (i.e. x ) in equation (16), we obtain 
 1 j 1 2 j 0G (s 1)Y G (s )Y 0  (20) 

On simplification the equation (20) provides us 
 1 1 0Y C Y  (21) 

where  
1
12 j

1 1
21 j

0 c (s )
C =

c (s ) 0
 

Similarly the matrices of 2 3 4 KC , C , C .......C can be calculated from the recurrence relation in next equation. 

The constants 1 1
12 j 21 jc (s ) and c (s ) are shown in appendix (A 1.1) 

Again equating to zero the coefficients of like powers of s+kx , we obtain  
 1 j k 2 2 j k 1 kG (s k 2)Y G (s k 1)Y GY 0 , k 0, 1, 2, 3,...  (22) 

On simplification the equation (22), we get  

 
k k
12 j 11 j

k 2 k 1 kk k
21 j 22 j

0 G (s ) G (s ) 0
Y Y Y , k 0, 1, 2, 3,...

G (s ) 0 0 G (s )
 (23) 

The constants k k k k
11 j 12 j 21 j 22 jG (s ) , G (s ) , G (s ) and G (s )  are shown in appendix (A 1.2) to (A 1.3). Putting 

k = 0, 1 , 2 , 3 ...  we get required reoccurrence relation in equation (23). It can be easily shown by continuing in 
like manner that the matrices 2k jC (s ) have same form as that of 1G (s + k)  and the matrices 2k+1 jC (s )  have 

alike 2G (s + k)  form. Thus, in general, we have 

 2k j 2k+1 j 2k j 2k+1 j 0Y (s ) , Y (s ) = C (s ) , - C (s ) Y , k = 1 2 ,3 ...  (24) 

where 
2k 2k+1
11 j 12 j

2k j 2k+1 j2k 2k+1
22 j 21 j

c (s ) 0 0 c (s )
C (s ) = ; C (s ) =

0 c (s ) c (s ) 0
 (25) 

The values of 2k 2k 2k+1 2k+1
11 j 22 j 12 j 21 jc (s ) , c (s ) , c (s ) and c (s ) are shown in Appendix (A 1.4) to (A 1.8). From 

equations (25), it can be seen that 
 1 * 1 **

2k j 2k 1 jC (s ) O k C , C (s ) O k C  (26) 

where * **C and C are defined in Appendix (A 1.9). Due to Cullen [22], in complex field a sequence of matrix 

kB  converges, as kk
(Lim B = B) , if every value of the 2k component the sequence converges. Using above 

facts, we easily conclude that both the matrices 2k jC (s ) 0  and 2k+1 jC (s ) 0 , as k . This means that 
the series in equation (15) are uniformly and absolutely convergent. Thus the derived series might be term by term 
differentiation and are analytic functions. 
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Formal Solution for Displacement, Temperature and Stress 

With the help of equations (24) and (25), the general solution (13) becomes 

                            j j

1+α2 4 2k-s 1+s2k 2k+1 2
jk 11 j jk 12 j

k=0 j=1 j=3

U(x , τ) = E c (s )x - E c (s )x x exp(-iΩτ)  

 j j

1+α2 4 2k-1+s s2k+1 2k 2
jk 21 j jk 22 j

k=0 j=1 j=3

θ(x , τ) = - E c (s )x + E c (s )x x exp(-iΩτ)  (27) 

where 1k 2k 3k 4kE , E ,E ,E are arbitrary constants to be evaluated. With the help of equations (27), the stress and 
temperature gradient are achieved as 

                        j

2
1 * 2k * 2 2k+1
11 j 11 j 21 j jk 1+α2k+s -j=1 2

xx 0 4
k=0 2 * 2k+1 * 2k

12 j 12 j 22 j jk
j=3

R + s + d c (s ) - g x c (s ) E

τ = -iΩδ x exp(-iΩ τ)

- R + s + d c (s ) - g c (s ) E x
0δ0

j=1j 1j 1

4

j 1

44
          

 j
1+α2 4 2k+s -2 2k+1 1 2k 2

12 j jk 21 j 11 j jk 22 j
k=0 j=1 j=3

dθ 1= - R + s E c (s ) + R + s E c (s ) x exp(-iΩτ)
d x x

 (28) 

where 
2

1 2 * *0 0 1
11 12

0 0

2(1- 2δ )α iΩ εβ τ1+α 1-αR = 2k - , R = 2k + , d = , g = ;
2 2 δ δ

β00α *** 1τ1
0 0

, g = ;0

δ δ0
, g 00g =0 ;1 ;1  

The equations (27) and (28) represent the proper solution of the problem and field functions, which are obtained 
from the boundary conditions (5)–(6) for the purpose of the solution that concentrate the considered situation. Upon 
using the boundary conditions from equations (5)–(6) after non–dimensionalized form of equations for the domain 

lx1 we obtain 

 j

2
1 * 2k * 2 2k+1
11 j 11 j 21 j jk 1+α2k+s -j=1 -iΩτ2

4
2 * 2k+1 * 2k
12 j 12 j 22 j jk

j=3

R + s + d c (s ) - g x c (s ) E -

x e = 0

R + s + d c (s ) - g c (s ) E x

 (29) 

 j j

1+α2 4 2k-1+s s2k+1 2k -iΩτ2
jk 21 j jk 22 j 1

j=1 j=3

- E c (s )x + E c (s )x - h x e = 0  (30) 

 j
1+α2 4 2k+s -2 2k+1 1 2k -iΩτ2

12 j jk 21 j 11 j jk 22 j 2
j=1 j=3

1- R + s E c (s ) + R + s E c (s ) - h x e = 0
x

 (31) 

NUMERICAL RESULTS AND DISCUSSION 

For numerical computations the MATLAB software has been carried out for temperature gradient of thermally 
loaded sphere. For numerical computations the polymethyl methacrylate material has taken for which the physical 
data is given below [4]: 

* 11 -1 2
0 0 1 0 Tˆ ˆω =1.11×10 s , T = 773 K , δ = 0.333 , α = α = 0.05 , τ = 0.02 , ε = 0.045 ,  

-3 -1 -1 -1 -1 -6 -1
1 e Tτ = 0.03 , ρ =1190 kg m , C =1400 Jkg K , K = 0.19 Wm K , α = 77×10 K  

The numerical results have been taken from equations (29) – (31) up to six decimal places by choosing 
appropriate value of (k = 20)  in order to get the results in desired accuracy. 
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  FIGURE 1.Temperature (θ) versus normalized thickness *(π )  

 
Figs. 1 to 4 show the change of temperature ( ) , displacement (U) , radial stress )( xx  and de–hoop stress 

)(  against normalized thickness )( * which is defined as *0 π 1 , where )1/()1(* lx  for 
α = -3.0, -1.0, 0.0 , 1.0, 3.0  in case of viscothermoelastic hollow sphere. It is observed that the temperature 
change initially increases up to α = 0.1 after that it decreases with increasing values of π* .  

 

               
            FIGURE 2. Displacement (U) versus normalized thickness *(π )  

 
This is noticed from Fig. 2 that the displacement (U)  initially increases and become maximum at 

0.2 α 0.35, after that it decreases with increasing values of * . Fig. 3 and Fig. 4 have plotted for radial stress 

xx(τ )  and de–hoop stress θθ(τ )  versus normalized thickness *(π ) . It is revealed from Fig. 3 that the radial stress has 
been noticed high at α = 0.1  which is positive for α = -3.0 ,-1.0 , 0.0 and negative for α =1.0 , 3.0 . Fig. 4 
depicts that the value of de–hoop stress θθ(τ )  is maximum at α = 3.0 , 1.0  i.e. positive and minimum i.e. negative 
for α = -3.0 , -1.0 , 0.0 . Effect of variation of radial stress xx(τ ) is apposite to that de–hoop stress θθ(τ ) . With 

increase in the value of normalized thickness )( * the variation of vibrations of radial stress xx(τ )  and de–hoop 
stress θθ(τ ) become asymptotic at *(π ³ 0.9) . 
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FIGURE 3. Radial stress xx(τ ) versus normalized thickness *(π )  

                      
FIGURE 4. De–hoop stress θθ(τ ) versus normalized thickness *(π )  

 
The magnitudes of temperature change, displacement and stresses are large in case of α = -3.0 and has small 

at magnitude 3.0 as compare to different values of (α) which clearly indicates the effect of in–homogeneity of 
the material. The numerical results are consistent with Sharma and Mishra [15] in the absence of viscous effects. 
The stress development in Fig. 3 is tensile in the case of α = -3.0 , -1.0 , 0.0 and compressive for α =1.0 , 3.0 and 
reverse behaviour in stress development of Fig. 4 have been occurred which clearly show the positive and negative 
effect of in–homogeneity of the material. 

CONCLUSION 

The matrix Fröbenius method of power series solution has been applied successfully to investigate the forced 
vibrations due to heat sources of viscothermoelastic hollow sphere. The field functions i.e. temperature, 
displacement and stresses in the context of generalized theories assumed in this paper are continuous. The closed 
form solution for fields functions have been derived for axisymmetric viscothermoelastic spheres. Convergence of 
the series solution has clearly indicated that derived series are term by term differentiated and analytic. This is 
noticed that with the help of grading index, the behaviour of stress development can be made tensile as well as 
compressive or vice-versa and deformation can be checked (increased / decreased) as per requirement. The 
magnitude of all field functions are large at α = - 0.3 and small magnitude at α = 3.0 as compare to different 
values of )( which clearly indicates the effect of in–homogeneity index of the material. 
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