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Abstract Motivated by the concept of quantum finite-state machines, we have investi-
gated their relation with matrix product state of quantum spin systems. Matrix product
states play a crucial role in the context of quantum information processing and are
considered as a valuable asset for quantum information and communication purpose.
It is an effective way to represent states of entangled systems. In this paper, we have
designed quantum finite-state machines of one-dimensional matrix product state rep-
resentations for quantum spin systems.
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1 Introduction

The simulation of quantum many-body systems on a classical computer is a difficult
task because the dimension of Hilbert space increases exponentially with the size of
the system. But, the development of quantum simulators allows us to simulate the
dynamics of interacting quantum many-body systems. In 1982, Feynman [1] initially
proposed the idea of quantum computing after performing a quantum mechanics sim-
ulation on a classical computer and observed that n qubits can simulate n spin-1/2
particles on a quantum computer. The most significant property ‘entanglement’ sepa-
rates the classical world from the quantum world. It is one of the most central topics in
quantum information theory. Quantum entanglement is purely quantum mechanical
correlation between two parts of the quantum system. In quantum many-body systems,
it provides a new way to describe the correlation between two particles.

In recent years, tensor network theory has become increasingly popular. Tensor
network states are a new language, based on entanglement, for quantum many-body
systems. It is widely used to simulate strongly entangled correlated systems [2]. The
DNA is the fundamental building block of a person. Similarly, the tensor is the funda-
mental building block of a quantum state. Therefore, the tensor is the DNA of the wave
function in which properties of the quantum many-body states can be read from the
individual small tensors alone. Such a structure is called a tensor network (TN). Such
a structure includes more degrees of freedom to attach the different tensors together.
These extra degrees of freedom connecting indices between the tensors are called bond
indices, and lines which do not connect one tensor to other are called open indices.
Figure 1 shows the TN diagrams:

Tensor network states can be classified on the basis of dimensions along which
the tensors are traversed. In 1993, White [3] introduced density matrix renormaliza-
tion group (DMRG), a most common TN method for simulation of one-dimensional
strongly correlated quantum systems. It is based on most well-designed class of TN
states called matrix product state (MPS). In the last two decades, DMRG is consid-
ered as a method of reference to study the stationary properties of one-dimensional
strongly correlated quantum systems. MPS provides an efficient approximation of
realistic local Hamiltonians and can be generated by sequential generation of tensors.

Fig. 1 Tensor networks: (i)
scalar, (ii) matrix, (iii) vector,
(iv) rank-3 tensor
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Regardless of success, there are restrictions remaining in the dimensions, and
classes of Hamiltonians that can be simulated with MPS-based methods. To over-
come such restrictions, various new algorithms have been proposed based on different
types of TN states. The first one was the projected entangled pair states (PEPS),
which is a generalization of MPS to two and higher dimensions, tree tensor network
(TTN), which has a real space renormalization group structure and has tree-like struc-
tures with no loops, and the multiscale entanglement renormalization ansatz (MERA),
which removes a short range entanglement [4].

2 Preliminaries

In this section, we review some formal definitions and related properties that will be
used in this paper.

Definition 1 [5] A finite-state machine (FSM) is defined as a quintuple
(Q, �, δ, q0, F), where

• Q is a finite set of states,
• � is finite set of alphabets,
• δ is a transition function: Q × � → Q,

• q0 ∈ Q is an initial state,
• F ⊆ Q is a set of final states.

Definition 2 [6,7] A stochastic finite-state machine (SFSM) is defined as a triple
(S, X, Y, T (y) : y ∈ Y ), where

• S is a finite set of states,
• X and Y are input and input alphabets, respectively,
• T (y) are sub-stochastic matrices such that T = ∑

y∈Y T (y), where T is a stochastic

matrix and T (y) is probability of transition from one state to other.

To process the languages with SFSM, we adopt Dirac’s bra–ket notation. It is closed
under addition and multiplication by scalars. Using Dirac’s notation, the vectors are
denoted by kets |u〉 (row vectors). We can associate with each ket a vector in the dual
space called bra 〈v| (column vectors). In SFSM, the probability associated with words
w1w2w3 . . . wL∈Y L of length L is computed as

Pr (wL) = 〈π |T (wL )|η〉, (2.1)

where 〈π | is stationary probability density such that 〈π | = (π1, π2, π3, . . . , πS) sat-
isfy π1 ≥ 0;∑S

i πi = 1; T (wL ) = T (w1)T (w2)T (w3) . . . T (wL ) are transition matrices;
and |η〉 = (1, 1, 1, . . . , 1)T is a column vector with |S| components [6,7]. We define
a QFSM that relates to the standard quantum mechanical explanation of a physical
experiment.

Definition 3 [6,7] A quantum finite-state machine (QFSM) is defined as a quintuple
(Q, 〈�|, X,Y, P(y) : y ∈ Y,U (y)

)
,where
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• Q is a finite set of states,
• 〈�| is a state vector which belongs to n-dimensional Hilbert space H,

• X and Y are input and output alphabets, respectively,
• P(y) is a mutually orthogonal projection operator such that

∑
y∈Y P(y) = 1,

• U (y) is a transition matrix such thatU (y) = U.P(y), whereU is an unitary matrix
and P(y) is an orthogonal projection operator.

A quantum deterministic finite-state machine is a quantum finite-state machine in
which each matrix U (y) has at most one nonzero entry per row. A QFSM is said to
be quantum transducer [7] with |X | = 1. In QFSM, there exists a basis vector vi for
each quantum state qi ∈ Q, having single nonzero entry of a one at i th coordinate.
The set of basis vectors span the Hilbert space H. If a state qi ∈ Q having incoming
transition which outputs symbol y1, then P(y1)vi = vi [6]. Consider another incoming
transition that outputs symbol y2, and then P(y2)vi = vi . Subsequent to y1 �= y2, by
mutual orthogonal of projections, it satisfies that P(y1)P(y2) = 0.

To measure the probability of words for QFSMs, we define density operator ρ on
a finite set of states that satisfy that {�1, . . . , �k} as

ρ =
k∑

i

ρi |�i 〉 〈�i |, (2.2)

where ρi is the probability for the system in the state of �i , and �i ’s are the diagonal
basis for ρ. The density operator on Hilbert space must satisfy the trace condition,
i.e., Tr (ρ) = 1 |ρ ≥ 0, where Tr( ) refers to the sum of the diagonal elements
of matrices. Similar to stationary density operator of SFSMs, the stationary density
operator ρ for QFSMs is defined as

ρ =
∑

y∈Y
P(y)U∗ρ U P(y). (2.3)

It is invariant under unitary evolution. The stationary density operator of QFSM is
ρ = |Q|−1 · 1 (proved in [6]). In QFSM, the probability of a single character y ∈ Y
depends on dimensions of projection operators and computed as

Pr (y) = |Q|−1 · dim
(
P(y)

)
. (2.4)

The probability associated with words w1w2w3 . . . wL ∈ Y L of length L is computed
as

Pr (wL) = Tr
(
U∗(wL)ρU (wL)

)
, (2.5)

where ρ = |Q|−1 · 1 is stationary density operator and U (wL) = U (w1) U (w2)

U (w3) . . . U (wL).

Definition 4 [6] A square matrix A of size n is doubly stochastic (or bistochastic) if
all its entries are nonnegative real numbers and each of its rows and columns sums to
1. It is unistochastic if there exists a unitary matrix U such that Ai j = |Ui j |2.
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Fig. 2 Tensor network states: (i) MPS, (ii) PEPS, (iii) TTN, (iv) 1-D binary MERA

3 Matrix product state

The family of MPS is the most prominent example of TN states. There are various
powerful methods such as density matrix renormalization group (DMRG) algorithm,
power wave function renormalization group (PWFRG) and time-evolving block dec-
imation (TEBD) based on MPS to simulate one-dimensional quantum many-body
systems [8]. Figure 2(i) shows the MPS as one-dimensional array of tensors and an
example of finite system of 4 sites. There exists one tensor for each site in quantum
many-body systems. MPS shows a certain geometry that is relevant to experimen-
tal and quantum information theoretic applications. The family of MPS consists of
following non-trivial states:

3.1 GHZ state

A Greenberger–Horne–Zeilinger (GHZ) state is an entangled quantum state [2,10]
which has many non-classical properties. The GHZ state of N -spins 1/2 is defined as

|GHZ〉 = 1√
2

(
|0〉⊗N + |1〉⊗N

)
. (3.1)

It can be represented independently by the matrices:

A0 =
(

1 0
0 0

)

, A1 =
(

0 0
0 1

)

. (3.2)
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The GHZ state for 3-qubit is 1√
2

(|000〉 + |111〉) . It is highly entangled quantum state
of N -spins, which has some non-trivial entanglement properties [11].

3.2 AKLT state

In 1987, Affleck–Kennedy–Lieb–Tasaki [12] state introduced an extension of quantum
Heisenberg spin model. It is one of the most interesting quantum states in correlation
physics, which is a ground state of quantum spin chain of spin-1. It is given by the
Hamiltonian:

H =
∑

i

(

Si · Si+1 + 1

3
(Si · Si+1)

2
)

. (3.3)

In MPS representation of AKLT state, each spin-1 is replaced by a pair of symmetrized
spin-1/2. Consider triplet states represented as spin-1 states

|+〉 = | ↑↑〉,
|0〉 = | ↑↓〉 + | ↓↑〉√

2
,

|−〉 = | ↓↓〉,

whereas adjacent pairs of spin-1/2 are linked in a singlet state such as |↑↓〉−|↓↑〉√
2

. The
normalized MPS representation of N -chained AKLT state is:

|ψ〉 =
N∑

σ

Tr
[
Aσ1 Aσ2 . . . AσN

] |σ1σ2 . . . σN 〉. (3.4)

Following are the three matrices categorized with Pauli matrices indices as σi
′s [3].

A+ =
(

0
√

2
3

0 0

)

, A0 =
( −1√

3
0

0 1√
3

)

, A− =
(

0 0

−
√

2
3 0

)

. (3.5)

It can be computed as

〈ψ |ψ〉 =
N∑

σi , σi
′
〈σ |σ ′〉 Tr

[
Aσ1

′
Aσ2

′ · · · AσN
′]
Tr

[
Aσ1 Aσ2 . . . AσN

]

= Tr

(
∑

σ1

Aσ1∗ ⊗ Aσ1

)

. . .

(
∑

σ1

AσN ∗ ⊗ AσN

)

= Tr EN , (3.6)
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where E = ∑

σ

Aσ∗ ⊗ Aσ =

⎛

⎜
⎜
⎝

1
3 0 0 2

3
0 − 1

3 0 0
0 0 − 1

3 0
2
3 0 0 1

3

⎞

⎟
⎟
⎠ .

3.3 Cluster state

In 2009, Raussendorf, Browne and Briegel [13] introduced the concept of cluster state.
It is a type of highly entangled state multiple qubits [2]. Cluster states are the unique
ground state of the 3-body interactions as

∑
i σ

z
i σ x

i+1σ
z
i+2. Consider a cluster state of

2-qubits:

|φ2〉 = |+〉1|+〉2 = 1

2
(|0〉 + |1〉) (|0〉 + |1〉) → 1

2
(|0〉|0〉 + |0〉|1〉 + |1〉|0〉−|1〉|1〉)

= 1

2
((|0〉 + |1〉) |0〉 (|0〉 − |1〉) |1〉)

= 1√
2

((|+〉1|0〉2) + (|−〉1|1〉2)) . (3.7)

It forms Bell state. Its matrix product state is represented as

A0 = |0〉|+〉 =
(

1 1
0 0

)

, A1 = |1〉|−〉 =
(

0 0
1 − 1

)

. (3.8)

3.4 W state

|W 〉 = 1√
n

(|100 . . . 0〉 + |010 . . . 0〉 + · · · + |000 . . . 1〉) . (3.9)

W state is an entangled quantum state represents and refers to the quantum superposi-
tion of pure states with equal coefficients [11]. It represents specific type of multipartite
entanglement in which exactly one of the qubits is in excited state |1〉, while all others
are in ground state |0〉. The W state for 3-qubit is 1√

3
(|100〉 + |010〉 + |001〉) . It is

represented by the matrices [9]:

A(1)0 =
⎛

⎝
0 0 0
0 1 0
0 0 1

⎞

⎠ , A(2)0 =
⎛

⎝
1 0 0
0 0 0
0 0 1

⎞

⎠ , A(3)0 =
⎛

⎝
1 0 0
0 1 0
0 0 0

⎞

⎠

A(1)1 =
⎛

⎝
1 0 0
0 0 0
0 0 0

⎞

⎠ , A(2)1 =
⎛

⎝
0 0 0
0 1 0
0 0 0

⎞

⎠ , A(3)1 =
⎛

⎝
0 0 0
0 0 0
0 0 1

⎞

⎠ .

(3.10)

Both |GHZ〉 and |W 〉 represent two different kinds of tripartite entanglement. |W 〉 is
less entangled than the |GHZ〉, because it leaves bipartite entanglements on measure
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one of its sub-systems. But on measurement of |GHZ〉, it collapse into a mixture or
a pure state.

4 Constructing QFSM

In this section, we have designed QFSM of various MPS models and proved that it
is equivalent to MPS representation of ground state of quantum spin systems. It is
true that every QFSM generates a SFSM with the same word probabilities. Let MQ =
(Q, 〈�| , X, Y, P(y) : y ∈ Y, U (y)

)
be a QFSM and M ′

S = (S, X, Y, T (y)′ :
y ∈ y) be a SFSM, where |Q| = |S| and T (y)′

i j = |U (y)i j |2 (proved in [6]) from the
definition of equivalent SFSM. Therefore, M ′

S produces same probabilities for every
word as MQ .

Consider a one-dimensional matrix product state; our process is to construct a quan-
tum finite-state machine as follows: We have equivalent matrix product state models
with unitary matrix or with unistochastic transition matrix T . Then, we construct a
quantum finite-state machine with the same number of states. It is proved that every
deterministic quantum generator has an equivalent deterministic classical generator
that produces the same stochastic process if there is a unitary evolution and projective
measurement for quantum process [14,15]. Amanda constructed quantized versions
of several well-known stochastic finite-state machines [6]. There are two ways to con-
struct quantum finite-state machine from a classical machine: We have unistochastic
matrix for which there exists a unitary matrix such that Ti j = |Ui j |2, and other using
quantum analogy U (y) = U · P(y) for the symbols transition matrix and projection
operators. Following are the construction of QFSM of various MPS models:

4.1 GHZ state

In the construction of QFSM, we need to find a unitary matrixU for which Ti j = |Ui j |2.
From the definition of QFSM, recall the U (y) = U · P(y), which is quantum analogy
of the symbol-labelled transition matrices. We consider the following quantum finite-
state machine for the maximum entangled GHZ state of 3-qubit:

Q = {A, B}, Y = {0, 1}, U = 1√
2

(
1 − 1
1 1

)

, P(0) =
(

1 0
0 0

)

,

P(1) =
(

0 0
0 1

)

. (4.1)

The transition matrices are:

U (0) = 1√
2

(
1
1

)

, U (1) = 1√
2

(− 1
1

)

.

Correspondingly, the stochastic finite-state machine of GHZ state is defined as:

S = {A, B}, Y = {0, 1}, T (0) = 1

2

(
1 0
1 0

)

, T (1) = 1

2

(
0 1
0 1

)

. (4.2)
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It can be easily checked that GHZ state has a unistochastic matrix T = T (0) + T (1).

The matrix T satisfies Ti j = |Ui j |2, whereU is unitary matrix (Fig. 3). The probability
of words for the GHZ state with words up to length L = 3 is given in Table 1.

Thus, the quantized version of the GHZ state is shown in Fig. 4. It can easily be ver-
ified that the probabilities of words produced by the above QFSM and SFSM for GHZ
state are same. Therefore, QFSM and SFSM for GHZ state are equivalent (Table 2).

4.2 AKLT state

The two-state stochastic finite-state machine of AKLT is given as

S = {A, B}, Y = {0, 1}, T (+) =
(

0
√

2
3

0 0

)

,

T (0) =
(−1/

√
3 0

0 1/
√

3

)

, T (−) =
(

0 0

−
√

2
3 0

)

. (4.3)

Fig. 3 Stochastic finite-state
machine of GHZ state

Table 1 Probability of words
for stochastic machine of GHZ
state

Word w Probability Pr(w)

0 1/2

1 1/2

00 1/4

01 1/4

10 1/4

11 1/4

000 1/8

001 1/8

010 1/8

011 1/8

100 1/8

101 1/8

110 1/8

111 1/8
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Fig. 4 Quantum finite-state
machine of GHZ state

Table 2 Probability of words
for quantum machine of GHZ
state

Word w Probability Pr(w)

0 1/2

1 1/2

00 1/4

01 1/4

10 1/4

11 1/4

000 1/8

001 1/8

010 1/8

011 1/8

100 1/8

101 1/8

110 1/8

111 1/8

Above, transition matrices are not stochastic. We normalized the matrices to form
stochastic matrices such that T (y) = 〈T (y)|T (y)〉. We encode the above three matrices
of AKLT state into two matrices in order to reduce calculations. Correspondingly,
the ratio of rank

(
P(0)

)
: rank

(
P(1)

)
is 1 : 2. Therefore, |Q| ≥ 3 and it will have

minimal three states. Firstly, we wish to design a SFSM for AKLT state that produces
same probabilities of words as quantum version of machine and transition matrix is
unistochastic. In Fig. 5, we have shown a four-state stochastic machine for AKLT state
and have a unistochastic matrix.

T (0) =
(

1
3

2
3

0 1
3

)

, T (1) =
(

0 0
2
3 0

)

, T =
(

1
3

2
3

2
3

1
3

)

.
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Fig. 5 Four-state stochastic
finite-state machine of AKLT
state

We have split the states A, B to form four-state SFSM for AKLT state given as

S = {A, B, C, D}, Y = {0, 1}, T (1) =

⎛

⎜
⎜
⎜
⎜
⎝

0 2
3 0 0

0 1
3 0 0

1
3 0 0 0
2
3 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

,

T (0) =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 1
3 0

0 0 2
3 0

0 0 0 2
3

0 0 0 1
3

⎞

⎟
⎟
⎟
⎟
⎠

(4.4)

It has a unistochastic matrix T = T (0) + T (1).

T =

⎛

⎜
⎜
⎜
⎜
⎝

0 2
3

1
3 0

0 1
3

2
3 0

1
3 0 0 2

3
2
3 0 0 1

3

⎞

⎟
⎟
⎟
⎟
⎠

. (4.5)

Correspondingly, matrix T (4.5) satisfies Ti j = |Ui j |2, where U is unitary matrix
(Fig. 6). Thus, the quantized version of AKLT state is given by

Q = {A, B, C, D}, Y = {0, 1}, U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 −
√

2
3 − 1√

3
0

0 1√
3

−
√

2
3 0

− 1√
3

0 0 −
√

2
3

−
√

2
3 0 0 1√

3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(4.6)

P(0) = |e1〉 〈e1| + |e2〉 〈e2|, P(1) = |e3〉 〈e3| + |e4〉 〈e4|.
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Fig. 6 Quantum finite-state
machine of AKLT state

Table 3 Probability of words
for QFSM of AKLT state

Word w Probability Pr(w)

00 1/4

01 1/4

10 1/4

11 1/4

000 1/12

001 1/6

010 1/12

011 1/6

100 1/6

101 1/12

110 1/6

111 1/12

The probability of single letter Pr (0) = Pr (1) = 1, i.e., the ratio of rank
(
P(0)

)
:

rank
(
P(1)

)
is 1 : 1. The probability of words of QFSM for AKLT state with words of

length L = 2, 3 is computed and is shown in Table 3.

4.3 Cluster state

Recently, cluster states have found widespread interest in quantum information theory.
The reason behind this is measurement-based quantum computation, which is different
from circuit model in quantum computation. Generally, cluster states are also graph
states. We have designed a 2-state quantum finite-state machine of cluster state of
3-qubits:
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|φ〉c3 = |+〉1|+〉2|+〉3 = 1√
2

((|+〉1|0〉2) + (|−〉1|1〉2)) (|0〉3 + |1〉3)

= 1√
2

(|+〉1|0〉2|+〉3) + (|−〉1|1〉2|−〉3) = |GHZ3〉. (4.7)

It shows that the cluster state |φ〉c3 of 3-qubits is equivalent to GHZ state. Therefore, its
QFSM is similar to GHZ state of 3-qubits, which is shown in Fig. 4, and the probability
of words is given in Table 2 under Sect. 4.1.

4.4 W state

It is easier to construct models with bistochastic matrices than to construct it with a
unistochastic matrix. But, it is not sure that if we can find a stochastic model with
a bistochastic matrix that will actually be unistochastic matrix. The four basis states
named (ϕA, ϕB, ϕC , ϕD) spanning the Hilbert space H for W state are

|ϕA〉 = |1000〉, |ϕB〉 = |0100〉, |ϕC 〉 = |0010〉, |ϕD〉 = |0001〉.

We constructed the 4-state quantum finite-state machine of 4-qubit W state by using
the projection matrices 3.10 such that

Q = {A, B, C, D}, Y = {0, 1}, U = 1

2

⎛

⎜
⎜
⎝

1 − 1 − 1 1
1 1 1 1
− 1 −1 1 1
− 1 1 − 1 1

⎞

⎟
⎟
⎠ , (4.8)

P(1)0 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , P(2)0 =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ ,

P(3)0 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ , P(4)0 =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠

P(1)1 =

⎛

⎜
⎜
⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ , P(2)1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞

⎟
⎟
⎠ ,

P(3)1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞

⎟
⎟
⎠ , P(4)1 =

⎛

⎜
⎜
⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ .
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Fig. 7 Quantum finite-state machine of W state

The quantized version of W state shown in Fig. 7 represents unitary operations.
Consider X = {a, b, c, d}, the input sequence (abcd)+ and the probability of
different word sequences of length L = 4, i.e., w1w2w3w4 ∈ Y 4 is computed as
Pr (wL) = Tr (U∗(wL)ρU (wL)), where ρ = 1

4 · 1.

U P(1)0 = 1

2

⎛

⎜
⎜
⎝

0 − 1 − 1 1
0 1 1 1
0 − 1 1 1
0 1 − 1 1

⎞

⎟
⎟
⎠ , U P(1)1 = 1

2

⎛

⎜
⎜
⎝

1 0 0 0
1 0 0 0
− 1 0 0 0
− 1 0 0 0

⎞

⎟
⎟
⎠ ,

U P(2)0 = 1

2

⎛

⎜
⎜
⎝

1 0 − 1 1
1 0 1 1
− 1 0 1 1
− 1 0 −1 1

⎞

⎟
⎟
⎠ ,

U P(2)1 = 1

2

⎛

⎜
⎜
⎝

0 − 1 0 0
0 1 0 0
0 − 1 0 0
0 1 0 0

⎞

⎟
⎟
⎠ , U P(3)0 = 1

2

⎛

⎜
⎜
⎝

1 − 1 0 1
1 1 0 1
− 1 − 1 0 1
− 1 1 0 1

⎞

⎟
⎟
⎠ ,
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U P(3)1 = 1

2

⎛

⎜
⎜
⎝

0 0 − 1 0
0 0 1 0
0 0 1 0
0 0 − 1 0

⎞

⎟
⎟
⎠ ,

U P(4)0 = 1

2

⎛

⎜
⎜
⎝

1 − 1 − 1 0
1 1 1 0
− 1 − 1 1 0
− 1 1 − 1 0

⎞

⎟
⎟
⎠ , U P(4)1 = 1

2

⎛

⎜
⎜
⎝

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

⎞

⎟
⎟
⎠ .

Quantum information has the ability to classify entanglement by means of some math-
ematical or physical uniformity. Therefore, it helps in increasing the practical abilities
of quantum information protocols. In quantum information theory, many multiparti-
cle entangled states (GHZ and W state) and metrology can be represented by MPS.
Cluster states are featuring in the context of measurement-based quantum computing.
MPS are so powerful and efficient such that they are optimally suited for quantum
state tomography in condensed matter physics.

5 Conclusion

In this paper, we have efficiently simulated matrix product states with a broader quan-
tum computational theory and investigated their relationship with quantum finite-state
machine (QFSM) using unitary criteria. It has been proved that QFSM is equivalent
to MPS representations of ground state of quantum spin systems. In future, we will
design quantum version of projected entangled pair state (PEPS) representations of
ground state of quantum spin systems.
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