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a b s t r a c t 

Quantum finite automata (QFA) play a crucial role in quantum information processing theory. The repre- 

sentation of ribonucleic acid (RNA) and deoxyribonucleic acid (DNA) structures using theory of automata 

had a great influence in the computer science. Investigation of the relationship between QFA and RNA 

structures is a natural goal. Two-way quantum finite automata (2QFA) is more dominant than its classical 

model in language recognition. Motivated by the concept of quantum finite automata, we have modeled 

RNA secondary structure loops such as, internal loop and double helix loop using two-way quantum fi- 

nite automata. The major benefit of this approach is that these sequences can be parsed in linear time. In 

contrast, two-way deterministic finite automata (2DFA) cannot represent RNA secondary structure loops 

and two-way probabilistic finite automata (2PFA) can parse these sequences in exponential time. To the 

best of authors knowledge this is the first attempt to represent RNA secondary structure loops using 

two-way quantum finite automata. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Bioinformatics [1] is a field of applied science in which compu-

tational and mathematical models are applied to biology. Quantum

computing is an attractive field that deals with theoretical com-

putational systems (i.e., quantum computers), combining visionary

ideas of Computer Science, Physics, and Mathematics. It is based

upon the quantum phenomena of entanglement and superposition

to perform operations on quantum computers. Quantum mechan-

ics with classical finite automata gives us quantum finite automata

(QFA). 

It is a theoretical model with finite memory for quantum com-

puters, which plays a vital role in performing real-time computa-

tions. Quantum automata lay down the vision of quantum proces-

sors for performing quantum actions on reading inputs. It is de-

fined as a quantum counterpart of a classical finite automaton. In

QFA, quantum actions are performed by reading the symbols from

the input tape. 

The concept of quantum automata was first proposed by Moore

and Crutchfield [2] and Kondacs and Watrous [3] , independently.

In 1997, Kondacs and Watrous [3] proposed a variant of quantum

automata: measure-many one-way quantum finite automata (MM-

1QFA) and two-way quantum finite automata (2QFA), which is a
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uantum variant of two-way finite automata. In the 2QFA model,

he tape head can remain stationary or move either in the left

r right direction. The 2QFA is more dominant than the classical

odel. In 20 0 0, Moore and Crutchfield [2] proposed another vari-

nt of the quantum model: measure-once one-way quantum finite

utomata (MO-1QFA). 

Nowadays, a major concern of bioinformatics is the analysis and

epresentation of deoxyribonucleic acid (DNA) and ribonucleic acid

RNA). The grammatical formalism of biological sequences, such as

NA, RNA, and proteins, can be used to solve bioinformatics prob-

ems efficiently, such as multiple alignment calculation, classifica-

ion, and prediction of biological sequences with their primary and

econdary structures and their functions. The RNA structure folds

round itself to do base pairing, which leads to the formation of

arious secondary structure motifs (loops). In RNA secondary struc-

ure formation, some of the base pairs contain exact complement

ase pairs, whereas other base pairs will not perform pairing be-

ause of the lack of exact complement pairs, thereby tending to

orm loops. Loops can be of various types, such as the hairpin loop,

ulge loop, internal loop, double helix, and pseudoknot, depending

n their shape. Moreover, RNA and DNA are made by monomers

nown as nucleotides. Each nucleotide consists of a pentose car-

on sugar, a phosphate group, and a nitrogenous base. If the sugar

s ribose, then the polymer is RNA. If the sugar is deoxyribose, then

he polymer is DNA. In addition, RNA is single-stranded structure,

hereas DNA is double-stranded helical structure. 

https://doi.org/10.1016/j.chaos.2018.09.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.09.035&domain=pdf
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RNA structure is classified into primary, secondary and tertiary

tructures. RNA is single-stranded structure i.e. the sequence of the

ases (a , c, g, u ) are in linear order in its primary structure form

4] , where purines are classified into adenine (a ) and guanine (g) ,

hile pyrimidine are classified into cytosine (c) and uracil (u ) .

NA structure folds around itself to do base pairing which leads

o the formation of various secondary structure motifs (loops). In

econdary structure formation, all the bases do not contain exact

omplementary base pairs, some of the bases lack correct com-

lement base pair, which leads to the formation of loops such as

airpin loops, internal loops, bulge loops and multi-branch loops.

t least three bases are required to form loop [5] . Watson-Crick

airing mostly occurs whereas Wobbleâpair rarely occurs in RNA

econdary structure. The tertiary structure involves orientation of

hese secondary structure motifs with respect to each other. It

orms certain structures such as pseudoknot which have number

f functional features. RNA tends to form single-stranded 3D struc-

ures due to presence of extra2 ′ -hydroxyl group present in ribose

art of RNA . 

The field of quantum computation and information processing

as subsequently made a significant impact on the academic and

esearch community alike. Recently, various applications of QFA

odels to interactive proof system [6,7] , debate system [8] ; tempo-

al logical theory [9] ; automata in molecular biology by quantum

echanics [10] has been investigated. There are various surveys

apers on QFAs. Recently, [11] survey is comprehensive enough and

rovides a general framework for all possible models. Moreover,

t has classified and survey results systematically by considering

lmost all possible research questions that have been examined

ntil now e.g. simulation between classical and quantum mod-

ls, state complexity, different language recognition models, decid-

bility and undecidability results, interactive proofs, using advise,

romise problems, etc. 

Furthermore, various generalizations of quantum computational

odels such as quantum computation over infinite words [12] ;

FA models on promise problems [13] , multihead one-way quan-

um finite automata (1QFA( k )) [14] ; Two-tape QFA models [15] has

een introduced. Recently, Pan et al. [16] quantified the multiqubit

tates in Grover’s searching algorithm by using geometric measure

f entanglement (GME). Li et al. [17] studied the phase estima-

ion by using distributed semi-computing model. They have pro-

osed a semi-distributed algorithm for phase estimation which has

chieved exponential acceleration and performs better than the

lassical algorithm. 

In classical automata theory, Freivalds [18] shown that a

on-regular language L = { a m b m | m ≥ 1 } can be recognized by

PFA with arbitrary small error. Later, Dwork and Stockmeyer

19] proved that 2PFA takes an exponential time to recognize the

ame language. It has been shown that non-regular language can

e recognized by 2PFA with error probability below 

1 

2 
, then there

xists a constant b > 0 , such that for infinite number of input n ,

he expected runtime of 2PFA must exceed 2 n 
b 
, where n is the

ength of input. It is known that 2DFA can recognize only regular

anguages [20,21] . 

The research has consistently grown in the field of quantum fi-

ite automata theory. Kondacs and Watrous [3] shown that a non-

egular language L = { a m b m | m ≥ 1 } can be recognized by 2QFA

ith one-sided error in linear time. In this paper, we have shown

hat it is possible to define non-context free languages by using

QFA. This paper is concerned with representing the secondary

tructure loops of RNA using 2QFA, as the secondary structure

oops of RNA contain nested dependencies. But, it cannot be rep-

esented by 2DFA, and two-way probabilistic finite automata can

arse these sequences in exponential time. Thus, it follows that

 

QFA is more powerful than its classical variants in terms of lan-

uage recognition. 

.1. Prior work 

Various representations of DNA and RNA sequences using for-

al grammar and automata have been found in literature. For ex-

mple, Kalra and Kumar [22] represented DNA and RNA biological

equences, such as inverted repeat, pseudoknot and tandem repeat

sing state grammar and deep pushdown automata. Sung [23] rep-

esented the secondary structure loops of RNA, such as the hairpin

oop, internal loop, bulge loop, and double helix, using context-

ensitive grammar. Various forms of context-free grammar are also

sed to represent RNA sequences [24,25] . 

In addition, cross-interaction grammar was used by Rivas and

ddy [26] to represent the secondary structure loops of RNA, in-

luding pseudoknots. Searls [27] used indexed grammar to repre-

ent DNA and RNA sequences, such as tandem repeat, inverted re-

eat, and pseudoknot. Searls [28] also represented DNA sequences

sing string variable grammar. Mizoguchi et al. [29] used stochas-

ic multiple context-free grammar to represent various classes of

seudoknots. Parallel communicating grammar systems were used

y Cai et al. [30] to represent the pseudoknot structure of RNA. 

Various researchers have represented the structures of RNA

nd DNA using concept of grammar and automata theory. Kup-

usamy et al. [31] introduced the concept of matrix-insertion dele-

ion grammar and represented the commonly found structures of

NA and RNA which occur at intramolecular level such as pseu-

oknot, hairpin, stem and loop, cloverleaf, dumbbell and attenu-

tor. Kuppusamy et al. [32] also represented the DNA and RNA

iomolecules structures which occur at intermolecular level such

s nick language, double strand language and linear hybridization

ligated) languages using matrix insertion-deletion grammar. Fur-

her, Kuppusamy and Mahendran [33] extended their own work 

f bio-molecular representation using matrix-insertion deletion 

rammar and represented the RNA and DNA bio-molecular struc-

ures of the intermolecular level, intramolecular level and RNA sec-

ndary level using matrix-insertion deletion grammar. Mahendran

nd Kuppusamy [34] also modeled commonly occurring of RNA

airing process using matrix insertion-deletion grammar. Various

ommonly occurring structures are represented as double bulge

oop, extended internal loop and triple stem and loop. Fernau et al.

35] proposed universal matrix insertion grammars of small size as

n extension of matrix insertion-deletion grammar to represent all

NA computations. 

Anderson et al. [36,37] represented the RNA structure using

tochastic context-free grammar. Rothemund [38] and Cavaliere

t al. [39] represented the action of a restriction enzyme in DNA

sing a Turing machine and pushdown automata, respectively. Fur-

hermore, Krasinski et al. [40] extended the Cavaliere et al. [39] ap-

roach and represented the action of a restriction enzyme in DNA

sing circular pushdown automata in which stack and input tape

re on the same circular strand. Recently, Khrennikov and Yurova

10] have proposed a model of protein behavior by using theory of

utomata and also explored the similarities between the modeling

f behavior of proteins and quantum systems. 

.2. Contributions 

After introducing some preliminary concepts in Section 2 , the

ollowing contributions are claimed: 

• Two-way Quantum Finite Automata of Hairpin Loop ( Section 3 ).

• Two-way Quantum Finite Automata of Internal Loop ( Section 3 ).

• Two-way Quantum Finite Automata of Double Helix Loop
( Section 3 ). 
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We will conclude in Section 4 . 

2. Preliminaries 

In a classical computer, a bit is a smallest basic building block

for storing information. Similarly, in a quantum computer, a qubit

is a quantum analogue of a classical bit. A qubit allows super-

position of both states at a time. It is a state vector having two

basis states labeled |0 〉 and |1 〉 . Therefore, any two or more dis-

tinct quantum states can be added together i.e. superposed, and

its outcome will be some other quantum state. In general, con-

sider a quantum state: | ψ〉 = α| 0 〉 + β| 1 〉 , where α and β are com-

plex numbers such that | α| 2 + | β| 2 = 1 . The complex amplitude

describes the behavior of the system at a given point of time in

space. And, its actual probability is given by the product with its

own complex conjugate. The state |0 〉 occurs with probability | α| 2 

and |1 〉 with probability | β| 2 . One qubit represents two complex

amplitudes ( α and β), similarly n qubits represent 2 n complex am-

plitudes. Following are the basic concepts of quantum mechanics

and linear algebra used in quantum automata theory: 

• Quantum state [41] : A quantum state | φ〉 is a superposition of

classical states, 

| φ〉 = α1 | x 1 〉 + α2 | x 2 〉 + · · · + αn | x n 〉 (1)

where | x i 〉 ’s are classical states for 1 ≤ i ≤ n, αi ’s are complex

numbers called amplitudes and | α1 | 2 + | α2 | 2 + · · · + | αn | 2 = 1 ,

where | αi | 
2 is the squared norm of the corresponding ampli-

tude. Quantum state can also be seen as n -dimensional column

vector. ⎡ 

⎢ ⎣ 

α1 

α2 

· · ·
αn 

⎤ 

⎥ ⎦ 

(2)

• Linear vector space [42] : It is defined as a set of elements,

called vectors. It is closed under addition and multiplication by

scalars. If two vector | ψ〉 and | ϕ〉 are a part of vector space,

then | ψ〉 + | ϕ〉 belongs to vector space. There is also an oper-

ation of multiplication by scalars such that if | ψ〉 is in vector

space, then α| ψ〉 is in the space, where α is a complex scalar. 

• Bra-ket notation [9] : In quantum mechanics, the bra-ket nota-

tion is used for describing quantum states residing in a com-

plex separable Hilbert space. It is composed of angle brackets

and vertical bars to signify the operation of a linear functional

on a vector or the scalar product of vectors in a complex vector

space. 

| u 〉 = 

[ 

a 1 
a 2 
a 3 

] 

, 〈 v | = 

[
a ∗1 a ∗2 a ∗3 

]
(3)

| u 〉〈 v | = 

[ 

a 1 a 
∗
1 a 1 a 

∗
2 a 1 a 

∗
3 

a 2 a 
∗
1 a 2 a 

∗
2 a 2 a 

∗
3 

a 3 a 
∗
1 a 3 a 

∗
2 a 3 a 

∗
3 

] 

(4)

a ∗
i 

denotes the complex conjugate of the complex number a i .

The ket | u 〉 is a column vector, and its conjugate transpose bra

〈 v | is a row vector. It is also known as Dirac notation. 

• Orthogonal and orthonormal vectors [9] : Two vectors | u 〉 and

| v 〉 are orthogonal, if they are perpendicular to each other i.e.

the inner product of vectors 〈 u | v 〉 = 0 . It can be defined as a set

of vectors V = { v 1 , v 2 , . . . v n } are mutually orthogonal if every

pair of vectors are orthogonal, i.e. 〈 v i | v j 〉 = 0 , for all i � = j . A set

of vectors V is orthonormal if every vector in V is a unit vector

and the set of vectors are mutually orthogonal. 

• Unitary evolution: In quantum systems, Markov matrices are

replaced by matrices with complex number entries for the time

evaluation of probabilistic systems, by maintaining the condi-

tion 

∑ n 
i =1 | αi | 2 . Therefore, consider a quantum system state at
time t 0 : | φ(t 0 ) 〉 = α1 | x 1 〉 + α2 | x 2 〉 + · · · + αn | x n 〉 change into the

state at time t : | φ′ (t ) 〉 = α′ 
1 | x 1 〉 + α′ 

2 | x 2 〉 + · · · + α′ 
n | x n 〉 where

complex amplitudes α1 , α2 , . . . , αn and α′ 
1 
, α′ 

2 
, . . . , α′ 

n are re-

lated by | φ′ (t) 〉 = U(t − t 0 ) | φ(t 0 ) 〉 , where U(t − t 0 ) is a time

dependent unitary operator such that (U(t − t 0 )) 
∗U(t − t 0 ) = 1 ,

αij ’s are its entries for 1 ≤ i, j ≤ n . 

⎡ 

⎢ ⎣ 

α11 α12 · · · α1 n 

α21 α22 · · · α2 n 

· · · · · · · · ·
αn 1 αn 2 · · · αnn 

⎤ 

⎥ ⎦ 

⎡ 

⎢ ⎣ 

α1 

α2 

· · ·
αn 

⎤ 

⎥ ⎦ 

= 

⎡ 

⎢ ⎣ 

α′ 
1 

α′ 
2 

· · ·
α′ 

n 

⎤ 

⎥ ⎦ 

(5)

and 

∑ n 
i =1 | αi | 2 = 

∑ n 
i =1 | α′ 

i 
| 2 = 1 . Therefore, evaluation of a

quantum system at any time must be unitary [9] . 

• Grammar [43] : It is a quadruple ( V N , V T , P, S ), where V N is a set

of non-terminals, V T is a set of terminals, P is a set of produc-

tion rules of the form { α → β| α, β ∈ ( V N ∪ V T ) 
∗}, where ∗ is the

Kleene star operator, S is a start symbol, and S ∈ V N . Each pro-

duction rule maps an input string of symbols to another (i.e.

an empty string) and the first string consist at least one non-

terminal in number of symbols. 

L (G ) denotes the language generated by grammar G . Let � =
{ g, c, a, u } be an alphabet of RNA. Pairing occurs between

purines and pyrimidine. The complement of symbol a is repre-

sented by a ′ . Complement pairing commonly occurs in RNA is

Watson–Crick pairing. In Watson–Crick base pairs, a ′ = u , u ′ =
a , g ′ = c and c ′ = g. 

• Quantum grammar [2] : It is defined as quadruple (V , T , I, P ) ,

where V is finite set of variables, T is finite non empty set of

terminals, I is an initial variable ( I ∈ V ), P is a finite set of pro-

ductions such that α → β , where α ∈ V 

∗ and β ∈ ( V ∪ T ) ∗. Each

production in P has a set of complex amplitudes such that

c k ( α → β) for 1 ≤ k ≤ n , where n is the dimension of the gram-

mar. 

Therefore, quantum grammar combines a complex amplitude

with each production rule. In order to find the probability of

quantum system for a transition from its initial state to final

state, we can calculate the probability amplitude on applying

the production rules for each path from initial state to final

state of the quantum system. Basically, a derivation α → β is

a series of strings, where a substring is replaced with another

on applying one of the productions at each step. The k th am-

plitude c k of a derivation is defined as the product of the c k ’s

for each productions in the chain and c k ( α⇒ β) as the sum of

the derivations of β from α. The amplitudes of a word w ∈ T ∗

are c k (w ) = c k (I ⇒ w ) and the probability associated with w is

the norm of its vector of amplitudes, f (w ) = 

∑ n 
k =1 | c k (w ) | 2 . 

• Quantum finite automata [3] is defined as real-time quantum

automata ( �, s init , H accept , P acc , U σ ), where Σ is an input al-

phabet, Hilbert space H , an initial state vector s init ∈ H with

| s init | 2 = 1 , A subspace H accept ⊂ H and an operator P acc which

project on it, a unitary transition matrix U σ for each σ ∈ �. 

The quantum language recognized by quantum finite au-

tomata as a function f QF A (w ) = | s init U w 

P acc | 2 , where U w 

=
U w 1 

U w 2 
· · ·U w | w | and w = w 1 , w 2 , . . . , is an input string belong

to any quantum language. The process of computation of input

string w starts with the initial vector, apply the unitary matrix

of each symbol in order and measure the probability by apply-

ing projection operator such that the resultant state is in sub-

space H accept . 

• Two-way quantum finite automaton [3] : A 2QFA is defined as a

sextuple ( Q , �, δ, q 0 , Q acc , Q rej ), where Q is a set of states. More-

over, Q = Q acc ∪ Q re j ∪ Q non , where Q acc , Q rej , Q non represent the

set of accepting, rejecting and non-halting states respectively.
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Fig. 1. Representation of Hairpin loop structure. 

Fig. 2. State diagram of Hairpin loop for L 1 = u p 
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� is an input alphabet, Transition function δ is defined by δ:

Q ×� × Q × D → C , where � = � ∪ { # , $ }, where # , $ represent

the left-end and right-end markers respectively, D = {← , ↑ , →}
represent the left, stationary and right direction of tape head,

× signify the Cartesian product between two sets and → is a

mapping. Transition function must satisfy the following condi-

tions: 

1. Local probability and orthogonality condition: ∑ ∀ (q 1 ,σ1 ) , (q 2 ,σ2 ) ∈ Q×�
(q ′ ,d) ∈ Q×D 

δ(q 1 , σ, q ′ , d) δ(q 2 , σ, q ′ , d) 

= 

{
1 q 1 = q 2 
0 q 1 � = q 2 

}
(6) 

2. First separability condition: ∑ ∀ (q 1 ,σ1 ) , (q 2 ,σ2 ) ∈ Q×�
q ′ ×Q 

δ(q 1 , σ1 , q ′ , → ) δ(q 2 , σ2 , 

q ′ , ↑ ) + δ(q 1 , σ1 , q ′ , ↑ ) δ(q 2 , 
σ2 , q 

′ , ← ) = 0 

(7) 

3. Second separability condition: ∑ ∀ (q 1 ,σ1 ) , (q 2 ,σ2 ) ∈ Q×�
q ′ ×Q 

δ(q 1 , σ1 , q ′ , → ) δ(q 2 , σ2 , 

q ′ , ← ) = 0 

(8) 

A 2QFA is simplified, for each σ ∈ �, if there exists a uni-

ary linear operator V σ on the inner product space such that

 2 { Q } → L 2 { Q }, where Q is the set of states and a function D : Q →
← , ↑ , →} . Define transition function as 

δ(q, σ, q ′ , d) = 

{〈 q ′ | V σ | q 〉 
0 

∣∣∣∣ if D (q ′ ) = d 
else 

}
(9) 

here 〈 q ′ | V σ | q 〉 is a coefficient of | q ′ 〉 in V σ | q 〉 . 
In order to process the input string by 2QFA, we assume that

nput string x is written on input with both end-markers such that

 x $. The automata is in any state q and head is above the symbol

. Then, with the amplitude δ( q, σ , q ′ , d ) moves to state q ′ , d ∈
← , ↑ , →} , moves the head one cell towards left, stationary and in

ight direction. The automata for processing an input x corresponds

 unitary evolution in the inner-product space H n . 

A computation of a 2QFA is a sequence of superpositions

 0 , c 1 , c 2 , . . . ., where c 0 is an initial configuration. When the au-

omata are observed in a superposition state, for any c i , it has

he form U δ| c i 〉 ∑ 

c∈ C n αc | c i 〉 where defines the set of configurations,

nd the configuration c i is associated with amplitude αc . Superpo-

ition is valid; if the sum of the absolute squares of their probabil-

ty amplitudes is unitary. The probability for a specified configura-

ion is given by the absolute squares of amplitude associated with

hat configuration. Time evolution of quantum systems is given by

nitary transformations. Each transition function δ induces a linear

ime evolution operator over the space H n . 

U 

x 
δ | q, k 〉 = 

∑ 

(q ′ ,d) ∈ Q×D 

δ(q, x (k ) , q ′ , d) | q ′ , k + d mod | x |〉 

or each ( q, k ) ∈ C | x | , where q ∈ Q, k ∈ Z | x | and extended to H n by lin-

arity [3] . 

. Modeling of RNA secondary structure loops using 2-way 

uantum finite automata 

In this section, we model the RNA secondary loops such as hair-

in loop, internal loop and double helix using two-way quantum

nite automata (2QFA). 

.1. Hairpin loop 

A hairpin loop is formed when RNA stands folds to pair with

nother section of the same strand and ends to form unpaired loop

44] . 
Fig. 1 describes the structure of hairpin loop. The structure of

airpin loop is as follows i.e. sequence 1 followed by hairpin loop

ollowed by paired sequence 1 [23] . 

If we denote the sequence 1 by a , and hairpin loop by b and

aired sequence by c, the language of above hairpin loop is L 1 =
 

p 
1 
v m u 

p 
2 
| p > 1 , m ≥ 3 . Here, u 1 , v, u 2 ∈ { g, c, a, u }. 

The quantum finite automata for language L 1 = { u p 
1 
v m u 

p 
2 
| p >

 , m ≥ 3 } is as follows: 

heorem 3.1. For a language L 1 = { u p 
1 
v m u 

p 
2 
| p > 1 , m ≥ 3 } and for

n arbitrary fixed positive integer n ≥ 2 such that n ∈ N , there exists

 2QFA such that for x ∈ L 1 , it accepts x with probability 1 and rejects

 �∈ L 1 with probability at least 1 − 1 

n 
. 

roof. We construct 2QFA model for the language: 

L 1 = { u 

p 
1 
v m u 

p 
2 
| p > 1 , m ≥ 3 } 

 = { q 0 , q 1 , q 2 , q 3 , q 4 , q 5 } ∪ { p i, j , w i, j | 1 ≤ i ≤ n, 1 ≤ j ≤ max (i, n −
 + 1) } ∪ { p i, 0 , w i, 0 , r i, 0 , s i, 0 , t i, 0 , K i, 0 , Y i, 0 | 1 ≤ i ≤ n } ∪ { f i , R i | 1 ≤ i ≤
 } , � ∈ { u 1 , v , u 2 } , Q acc = { F n } , Q re j = { q 5 } ∪ { f i | 1 ≤ i < n } ∪ { R i | 
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Table 1 

Details of transition function and tape head function. 

V # | q 0 〉 = | q 0 〉 V v | q 0 〉 = | q 1 〉 V u 1 | q 1 〉 = | q 2 〉 
V # | q 1 〉 = | q 5 〉 V v | q 2 〉 = | q 2 〉 V u 1 | q 2 〉 = | q 5 〉 
V $ | q 2 〉 = | q 5 〉 V v | q 3 〉 = | q 4 〉 V u 1 | q 4 〉 = | q 5 〉 
V u 1 | q 0 〉 = | q 0 〉 V v | q 4 〉 = | q 5 〉 V u 2 | q 0 〉 = | q 5 〉 

V u 2 | q 4 〉 = | q 4 〉 
V $ | q 4 〉 = 

1 √ 

n 

∑ n 
i =1 | p i, 0 〉 

V u 2 | p i, 0 〉 = | p i,n −i +1 〉 for 1 ≤ i ≤ n 

V u 2 | p i, j 〉 = | p i, j−1 〉 for 1 ≤ i ≤ n, 1 ≤ j ≤ n − i + 1 

V v | p i, 0 〉 = | s i, 0 〉 , V b | s i, 0 〉 = | r i, 0 〉 If v � = 3 

V v | r i, 0 〉 = | t i, 0 〉 for 1 ≤ i ≤ N V u 1 | s i, 0 〉 = | K i, 0 〉 
V u 1 | w i, 0 〉 = | w i,i 〉 for 1 ≤ i ≤ n V u 1 | K i, 0 〉 = | Y i,i 〉 
V u 1 | w i, j 〉 = | w i, j−1 〉 for 1 ≤ i ≤ n, 1 ≤ j ≤ n − i + 1 

V u 1 | Y i, j 〉 = | Y i, j−1 〉 for 1 ≤ i ≤ n, 1 ≤ j ≤ n − i + 1 

V # | w i, 0 〉 = 

1 √ 

n 

n ∑ 

l=1 

e 

2 πι

n 
il | f l 〉 for 1 ≤ i ≤ n 

V # | Y i, 0 〉 = 

1 √ 

n 

n ∑ 

l=1 

e 

2 πι

n 
il | R l 〉 for 1 ≤ i ≤ n 

Head functions 

D (q 0 ) = → , D (q 1 ) = ← , D (q 2 ) = → , 

D (q 3 ) = ← , D (q 4 ) = → , D (q 5 ) = ↑ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Details of transition function and tape head function. 

V # | q 0 〉 = | q 0 〉 V u 3 | q 2 〉 = | q 3 〉 V w 2 | q 9 〉 = | q 10 〉 
V $ | q 0 〉 = | q 14 〉 V u 3 | q 4 〉 = | q 4 〉 V w 2 | q 11 〉 = | q 11 〉 
V $ | q 11 〉 = | q 14 〉 V u 3 | q 5 〉 = | q 6 〉 V $ | q 12 〉 = | q 13 〉 
V u 1 | q 0 〉 = | q 0 〉 V u 3 | q 8 〉 = | q 9 〉 V w 2 | q 0 〉 = | q 14 〉 
V u 1 | q 1 〉 = | q 2 〉 V u 3 | q 0 〉 = | q 14 〉 V w 2 | q 2 〉 = | q 14 〉 
V u 2 | q 0 〉 = | q 1 〉 V w 1 | q 2 〉 = | q 14 〉 V w 2 | q 4 〉 = | q 14 〉 
V u 2 | q 1 〉 = | q 2 〉 V w 1 | q 4 〉 = | q 8 〉 V w 3 | q 11 〉 = | q 12 〉 
V u 2 | q 3 〉 = | q 4 〉 V w 1 | q 6 〉 = | q 7 〉 V w 3 | q 13 〉 = | q 13 〉 
V u 2 | q 0 〉 = | q 1 〉 V w 1 | q 9 〉 = | q 9 〉 V w 3 | q 0 〉 = | q 14 〉 
V v | q 4 〉 = | q 5 〉 V w 1 | q 10 〉 = | q 11 〉 V w 3 | q 2 〉 = | q 14 〉 
V v | q 6 〉 = | q 6 〉 V w 1 | q 0 〉 = | q 14 〉 V w 3 | q 4 〉 = | q 14 〉 
V v | q 2 〉 = | q 14 〉 V u 2 | q 2 〉 = | q 2 〉 V w 3 | q 9 〉 = | q 11 〉 
Head functions 

D (q 0 ) = → , D (q 1 ) = → , D (q 2 ) = → , D (q 3 ) = ← 

D (q 4 ) = → , D (q 5 ) = ← , D (q 6 ) = → , D (q 7 ) = ← 

D (q 8 ) = ← , D (q 9 ) = → , D (q 10 ) = ← , D (q 11 ) = → 

D (q 12 ) = ← , D (q 13 ) = → , D (q 14 ) = ↑ 

f  

a

 

a

T  

1  

t  

a  

l

P  

r

 

{
{
{
1

1

{  

t  

e  

L

 

s  

e  

i  

p  

s  

s  

a  

p  

o  

f

 

u  

K

r  

d  

i  

F

m  

s  

w  
1 ≤ i ≤ n } . The state transition functions and head functions are

given in Table 1 using equation (10). Each V σ take the values as

shown in Table 1 and also for each σ , the vectors formed V σ are

unitary on Hilbert space L 2 ( Q ) and D : Q → { ← , ↑ , → } represents

head functions. 

The process of designing 2QFA for language consists of three

phases. In the first phase, if the input is not of the form u + 
1 

v + u + 
2 
,

where + represents the Kleene plus, then the computation will be

rejected. Therefore, the first phase traverses the input string (i.e.

scanning through the each symbol of input string). At the start of

the second phase; the state q 4 reads the right-end marker $. Fur-

thermore, the computation is split in to the n different paths (state

transformations occur in parallel). Each path possesses equal am-

plitude 
1 √ 

n 
. Along the n different paths, each path moves deter-

ministically to the left-end marker # . On reading symbol u 2 , along

the i th path, tape W head remain stationary for n − i + 1 times. On

reading symbol u 1 , head remain stationary for i times. On reading

symbol v , it must satisfy the condition ( m ≥ 3); otherwise it leads

to reject the input string at the end. If number of u 1 ’s and u 2 ’s

are equal in input string, then different paths will reach the left-

end marker # at the same time. Finally, in third phase on read-

ing # , each computation path comes into n -way Quantum Fourier

transform (QFT). It produces either one accepting state or rejecting

state. Finally, 2QFA accepts the string u 2 
1 
v 3 u 2 

2 
with probability 1. If

the input string is not in the desired form, then all computation

paths reaches the left-end marker at different time and there is no

cancellation of rejecting states. Thus, for all n computation paths,

the conditional probability that an observation results in accep-

tance is 
1 

n 
, such that some of the paths comes to halt. Therefore,

the input string is said to be accepted with probability 
1 

n 
. Corre-

spondingly, the input string is said to be rejected with probability

1 − 1 

n 
. �

3.2. Internal loop 

Internal loops are formed when there is no match pair on the

both sides of the double-stranded RNA i.e. formation of hairpin

loop on both sides of double-stranded RNA [45] . 

Fig. 3 describes the structure of internal loop. The structure of

internal loop is as follows i.e. Sequence 1 followed by hairpin loop
ollowed by sequence 2, sequence, paired sequence 2, hairpin loop

nd paired sequence 1 [23] . 

The language generated by internal loop is 

L 2 = { u 

r 
1 u 

m 

2 u 

q 
3 
v z w 

q 
1 
w 

m 

2 w 

r 
3 | r, q > 1 , m ≥ 3 , z ≤ 2 } 

Here, ( u 1 , u 2 , u 3 , v, w 1 , w 2 , w 3 ) ∈ { g, c, a, u } The quantum finite

utomata for language L 2 is as follows: 

heorem 3.2. For a language L 2 = { u r 
1 
u m 

2 
u 

q 
3 
v z w 

q 
1 

w 

m 

2 
w 

r 
3 
| r, q >

 , m ≥ 3 , z ≤ 2 and r, q, m ∈ N > 0 , z ∈ N ≥0 } and for arbitrary compu-

ational paths n, M, P ∈ N , there exists a 2QFA such that for x ∈ L 2 , it

ccepts x with bounded error ε and rejects x �∈ L 2 with probability at

east 1 − 1 

nMP 
. 

roof. We construct 2QFA model for L 2 = { u r 1 u m 

2 
u 

q 
3 

v z w 

q 
1 
w 

m 

2 
w 

r 
3 |

, q > 1 , m ≥ 3 , z ≤ 2 } . 
Let M 2 QF A = (Q, �, δ, q 0 , Q acc , Q re j ) be a 2QFA Q =

 q 0 , q 1 , q 2 , q 3 , q 4 , q 5 , q 6 , q 7 , q 8 , q 9 , q 10 , q 11 , q 12 , q 13 , q 14 } ∪ 

 p i, 0 , r i, 0 , u i, 0 , s i, 0 , t s, 0 , v s, 0 | 1 ≤ i ≤ n, 1 ≤ s ≤ n } ∪ 

 q i j, 0 , r i j, 0 , g i j, 0 , u i j, 0 , v i j, 0 | 1 ≤ i ≤ N, 1 ≤ j ≤ M} ∪ { q i jl, 0 , v i jl, 0 , g i jl, 0 | 
 ≤ l ≤ n, 1 ≤ j ≤ M, 1 ≤ l ≤ P } ∪ { s i,k , p i,k , v i j,k , g i jl,k | 
 ≤ i ≤ n, 1 ≤ j ≤ M, 1 ≤ l ≤ max ( j, M − j + 1) } , � ∈ 

 u 1 , u 2 , u 3 , v , w 1 , w 2 , w 3 } , Q acc = { y n } and Q re j = { q 14 } . The state

ransition functions and head functions are given in Table 2 using

quation (10). All vectors formed V σ are unitary on Hilbert space

 2 ( Q ) and D represents head functions. 

The process of designing a 2QFA for language L 2 consists of

even phases namely traverse the input (i.e. scanning through the

ach symbol of input string), splition (state transformations occur

n parallel) of computation in to n different paths for having su-

erposition of states on reading the right-marker $ (i.e. quantum

ystem is in more than one state at a time), then n different paths

plits in to M different paths while reading leftmost w 3 , further

gain M different paths splits into P different paths with equal

robability on reading leftmost w 2 , perform P -way QFT at the end

f u 3 , then perform M-way QFT at the end of u 2 and similarly per-

orm n -way QFT to yield the result at the end. 

In the first phase, if the input string is not of the form

 

+ 
1 

u + 
2 

u + 
3 

v + w 

+ 
1 

w 

+ 
2 

w 

+ 
3 

or u + 
1 

u + 
2 

u + 
3 

w 

+ 
1 

w 

+ 
2 

w 

+ 
3 
, where + represents the

leene plus, then computation will be rejected. In Table 2 , q 13 

eads the right-end marker $ and the computation splits in to n

ifferent paths with equal probability 
1 √ 

n 
. Along the all n paths,

t checks whether the number of w 3 ’s is greater than 1 or not.

urther, we can define remaining transition functions such that V σ

ust satisfy unitary property. Fig. 4 shows the detailed state tran-

ition diagram of L 2 . In the third phase, upon reading the leftmost

 , n paths splits in to M different paths with equal probability
2 
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Fig. 3. Illustration of Internal loop structure. 

Fig. 4. State transition diagram of Internal loop for L 2 = u r 1 u 
m 
2 u 

q 
3 
v z w 

q 
1 
w 

m 
2 w 

r 
3 . 

 

o  

f  

n  

e  

c  

u  

c  

u  
1 √ 

M 

and checks whether the number of w 2 ’s satisfy the condition

r not. Furthermore, in fourth phase, M paths splits in to P dif-

erent paths with equal probability 
1 √ 

P 
and checks whether the

umber of w ’s is greater than 1 or not. In fifth phase, all P differ-
1 t  
nt paths reads v, u 3 or both. On reading the v , it must satisfy the

ondition ( z ≤ 2) and all paths moves towards left. On reading the

 3 ’s, each computation path enters P -way QFT. In the sixth, each

omputation path enters M-way QFT upon reading the left-most

 2 . In the last phase, on reading the left-marker # , each computa-

ion path enters N-way QFT to yield the result. It results in single
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Fig. 5. Illustration of double helix loop structure. 
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accepting state and other rejecting states. If all n th paths read the

left-end marker # at same time, then the input is accepted with

probability 1. �

3.3. Double helix 

Double helix loops are formed when there is no match pair

on the both sides of the double-stranded RNA and also ends in a

hairpin loop [23] . If in the language L 2 = u r 
1 
u m 

2 
u 

q 
3 
v z w 

q 
1 
w 

m 

2 
w 

r 
3 
| r, q >

1 , m ≥ 3 | z ≤ 2 of internal loop, value of z is ( z ≥ 3), it leads to the

formation of double helix. 

Fig. 5 describes the structure of double helix loop. The language

generated by grammar is of double helix loop i.e. Sequence 1 fol-

lowed by loop segment 1 followed by sequence 2, followed by hair-

pin loop, followed by paired sequence 2 followed by loop segment

2 followed by paired sequence 1 [23] . The language generated by

double helix is L 3 = { u r 
1 
u m 

2 
u 

q 
3 
v z w 

q 
1 

w 

m 

2 
w 

r 
3 
| r, q > 1 , m, z ≥ 3 } . Here,

( u 1 , u 2 , u 3 , v, w 1 , w 2 , w 3 ) ∈ { g, c, a, u }. The quantum finite automa-

ton for language L 3 is as follows: 

Theorem 3.3. For a language L 3 = { u r 
1 
u m 

2 
u 

q 
3 
v z w 

q 
1 

w 

m 

2 
w 

r 
3 
| r, q >

1 , m, z ≥ 3 and r, q, m, z ∈ N > 0 } and for arbitrary computational paths

n , M, P ∈ N , there exists a 2QFA such that for x ∈ L 3 , it accepts x with

bounded error ε and otherwise rejects it (x �∈ L 3 ). 

Proof. It functions similar to above languages instead its process of

designing consists of seven phases namely traverse the input, spli-

tion of computation in to n different paths for having superposition

of states on reading the right-marker $ and process w 3 ’s, then n

paths splits in to M different paths while reading leftmost w 3 , fur-

ther again M different paths splits into P different paths with equal

probability on reading leftmost w 2 , perform P -way QFT at the end

of u 3 , then perform M-way QFT at the end of u 2 and similarly per-

form n -way QFT to yield the result at the end. If all n th paths read

the left-end marker # at same time, then the input is accepted

with probability 1. Therefore, it can be easily checked that input

string x ∈ L 3 , can be recognized by 2QFA with probability 1. �

4. Conclusion 

RNA secondary structure loops contains nested dependencies,

so it cannot be represented by regular grammar or finite automata.

Previous attempts to represent these sequences use context-

sensitive grammar or stochastic context-free grammar or tree ad-

joining grammar, which have higher time complexities. In quantum

automata theory, a two-way quantum finite automaton is more

dominant than its classical counterparts. In this contribution, we

focused on RNA secondary structure hairpin loop; internal loop

and double helix loop and represented them by using two-way
uantum finite automata. The major benefit of this approach is that

equences can be parsed in linear time by one-sided bounded er-

or. To the best of author’s knowledge no such representation is

one using two-way quantum finite automata so far. In the future,

e will try to represent other secondary structure loops such as

ulge loop and junctions using other quantum computational mod-

ls. 
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