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Interest in quantum computing has increased significantly. Tensor net-
work theory has become increasingly popular and widely used to simu-
late strongly entangled correlated systems. Matrix product state (MPS) is
a well-designed class of tensor network states that plays an important role
in processing quantum information. In this letter, we show that MPS, as
a one-dimensional array of tensors, can be used to classify classical and
quantum data. We have performed binary classification of the classical
machine learning data set Iris encoded in a quantum state. We have also
investigated its performance by considering different parameters on the
ibmqx4 quantum computer and proved that MPS circuits can be used to
attain better accuracy. Furthermore the learning ability of an MPS quan-
tum classifier is tested to classify evapotranspiration (ETo) for the Patiala
meteorological station located in northern Punjab (India), using three
years of a historical data set (Agri). We have used different performance
metrics of classification to measure its capability. Finally, the results are
plotted and the degree of correspondence among values of each sample
is shown.

1 Introduction

Quantum computing deals with theoretical computational systems, com-
bining visionary ideas of computer science, physics, and mathematics. It
concerns the behavior and nature of energy at the quantum level to im-
prove the efficiency of computation. Feynman (1982) initially proposed the
idea of quantum computing in 1982 after performing a quantum mechan-
ics simulation on a classical computer. Quantum computing relies on the
quantum phenomena of entanglement, superposition, and interference to
perform operations, which are generally considered resources for its speed.
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Although the full influence of quantum computing is probably more than a
decade away, it has the potential to transform information processing and
promises a wide range of applications in the areas of quantum chemistry,
high-energy physics, and condensed matter, which are not tractable on clas-
sical computers.

In the past decade, the simulation of open and closed quantum sys-
tems has had an overwhelming response, with the study of tensor network
theory taking a central role in quantum physics, simulation, and machine
learning. Tensor network states are a new language, based on entangle-
ment, for quantum many-body systems (Gao & Duan, 2017). Tensor net-
work states are classified on the basis of dimensions along which the tensors
are traversed. It is widely used to simulate strongly entangled correlated
systems and to represent quantum states and circuits (Schuld, Bocharov,
Svore, & Wiebe, 2018). Tensor network methods is the term associated with
the tools, which are widely employed in experimental and quantum theo-
retical applications of machine learning.

The matrix product state (MPS) is the most prominent example of ten-
sor network states. It can be observed by maximum entanglement entropy
without forfeiting one-dimensional distributions. Matrix product tensor
networks have the ability to surround the entire input or output state space.
By using classical resources, tensor networks have shown impressive re-
sults for supervised and unsupervised learning tasks (Pestun & Vlassopou-
los, 2017). For large dimensions, tree tensor networks (TTNs) and multiscale
entanglement renormalization ansatz (MERA) have shown to be equivalent
to neural networks. These methods have seen many breakthroughs and
transformations in different areas of physics, mathematics, and computer
science.

Matrix product states have a wide range of practical applications: su-
pervised learning (Stoudenmire & Schwab, 2016), quantum dynamics (Bha-
tia & Kumar, 2018b), simulating quantum computation (Grant et al., 2018),
quantum finite state machines (Bhatia & Kumar, 2018a), unsupervised
learning (Han, Wang, Fan, Wang, & Zhang, 2018), simulating MPS on
a quantum computer (Bhatia & Saggi, 2018), quantum machine learn-
ing MPS (Biamonte, 2018), and many more. These states are complete,
with low entangled states represented efficiently, which is not possible
with large-dimension tensor network states. MPS can also be employed
in various emerging technologies, such as quantum cryptography, opti-
cal computing, dynamics quantum clustering, and image recognition. It
obeys one-dimensional area law, is dense in nature, offers finitely correlated
tensors and translational invariance, and is suited for describing higher-
dimensional systems too. Recently, MPS methods have been introduced to
compress the weights of neural network layers and classify images.

Through the effective deployment of information and communication
technologies (ICTs), India’s agriculture sector has been transformed. The
combination of ICTs and analytics can provide novel ways and ideas to
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do socially accepted and profitable agriculture. It will be also beneficial for
the environment (e.g., soil, water, climate). There is now a need for innova-
tion in technological, economical, and social agriculture. As the technology
rapidly spreads, big data analytics and quantum machine learning will be
the key to fostering a new revolution in agriculture. The technology of quan-
tum computers has evolved to solve real-world problems based on histori-
cal data, machine-generated data, and real-time streaming data. Quantum
computing can also bring a revolution through its ability to handle experi-
mental data, which can produce numerous solutions in various areas such
as health care, smart cities, and smart agriculture etc (Saggi & Jain, 2018).
In developing countries, farmers with limited knowledge and skills are sig-
nificant factors. Some tough questions need to be addressed. Can farmers
manage their farms and grow and harvest the crops too? Can they build
smart networks for field-testing the next generation of quantum comput-
ers, which promise to revolutionize complicated data processing problems.
They will be able to handle more data efficiently and can surpass conven-
tional systems. Quantum machine learning techniques are also closely tied
to a variety of application areas.

In this letter, we consider the supervised machine learning task of classi-
fying the Iris and climatic data sets on quantum computers using and MPS
quantum classifier. Section 2 examines related work. In section 3, we de-
scribed encoding of data and qubit efficient MPS classifiers. In section 4, we
look at model development and experimental results. Section 5 concludes.

2 Prior Work

The combination of neural networks and classical machine learning mod-
els with the efficiency of quantum computing has experienced incredible re-
sponses in the past few years. Initially, Harrow, Hassidim, and Lloyd (2009)
designed a quantum algorithm to approximate the features of solving a set
of N linear equations that runs in polynomial time. It is exponentially faster
than the best classical algorithm. Rebentrost, Mohseni, and Lloyd (2014)
presented a quantum support vector machine that can be implemented on a
quantum computer with the complexity O(log NM), logarithmic in the size
of training and classification stages. It has been observed that in contrast to
classical algorithms, exponential speed is gained.

Accurately estimating evapotranspiration (ETo) is a crucial issue for agri-
cultural planning because it plays a significant role in irrigation water
scheduling designed to use water efficiently. Evapotranspiration is a vital
component of the hydrological cycle, and there are a number of alterna-
tive models for representing ETo processes. It can be measured directly by
experimental techniques—for example, eddy covariance systems, lysime-
ters, and Bowen ratio energy balance (Kool et al., 2014; Martí, González-
Altozano, López-Urrea, Mancha, & Shiri, 2015), but these methods are
complex and unavailable in many regions (Allen, Pereira, Raes, & Smith,
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1998) because of their high cost. Therefore, mathematical models for ETo

estimation are needed. To further support a range of ETo modeling studies,
there is a need to facilitate the implementation of different ET models con-
veniently, consistently, and efficiently. Some software packages focus on ETo

modeling. Recently, Saggi and Jain (2019) developed a water model frame-
work based on deep learning for predicting the ETo of stations in Patiala and
Hoshiarpur.

Otterbach et al. (2017) investigated a hybrid quantum algorithm for
an unsupervised learning task known as clustering on a 19-qubit quan-
tum computer. They showed that noise is enabled by using gradient-free
Bayesian optimization and offer an optimal solution for all random prob-
lem instances. Recently, Farhi and Neven (2018) introduced the concept of
classification with quantum neural networks (QNNs). It presents a general
framework for supervised learning to represent labeled classical or quan-
tum data. It consists of a sequence of unitary transformations on the input
encoded quantum state, and the Pauli operator is measured on the final
output qubit. Furthermore, they considered real-world data containing im-
ages of two distinct sets of handwritten digits. They showed QNNs learning
ability to exactly determine the two data sets.

Initially, Stoudenmire and Schwab (2016) proposed a framework for a
quantum-inspired tensor network for multiclass supervised learning. The
MPS-based model is used to classify the images (MNIST) data set and
had less than a 0.01 testing error. Han et al. (2018) introduced MPS-based
generative modeling for unsupervised learning tasks. They considered
bars and stripes random binary patterns and the MNIST handwritten dig-
its to investigate their features, abilities, and shortcomings. They showed
that MPS exhibits much stronger learning ability compared to the inverse
Ising and Hopfield models. Liu, Zhang, Lewenstein, and Ran (2018) imple-
mented entanglement-guided architectures to classify images, where quan-
tum states are written in MPS. Liu et al. (2017) proposed two-dimensional
training tree-like tensor networks as classifiers for image recognition prob-
lems and tested them on MNIST and CIFAR data sets. They showed that the
proposed algorithm encodes classes of images into a tensor network state
optimally and can be characterized by quantum entanglement. Glasser,
Pancotti, August, Rodriguez, and Cirac (2018) introduced generalized ten-
sor networks and discussed the relationship between restricted Boltzmann
machines and string-bond states. They showed that generalized tensor net-
works can be associated exactly and can classify images accurately with
smaller bond dimension.

Gardas, Rams, and Dziarmaga (2018) simulated many body quantum
systems using a hybrid classical quantum algorithm, where the wave
function of quantum Ising models is represented using a Boltzmann ma-
chine. The neural network is trained using a D-wave quantum annealer,
and the ground-state energy is calculated. Huggins, Patel, Whaley, and
Stoudenmire (2019) proposed tensor network–based quantum computing
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Figure 1: Representation of MPS with five sites.

approaches for generative and discriminative tasks designed to generate
samples from a probability distribution and assign labels to images. The ex-
periments are executed on quantum hardware using an optimization pro-
cedure for handwritten classes of images, and the training model’s noise
resilience is tested. Grant et al. (2018) introduced the concept of hierarchi-
cal quantum classifiers and executed binary classification for classical and
quantum data. They considered two classical machine learning data sets,
Iris and MNIST, and deployed the classifiers on a quantum computer. They
showed impressive results and better results by considering different uni-
tary parameters.

In this letter, we offer the following contributions:

• We demonstrate that an MPS as a one-dimensional array of tensors
can be used to classify quantum mechanical data in addition to clas-
sical data sets.

• We encode classical data sets (Iris and Agri) into a quantum entangled
state, which is given as an input to an MPS tensor network quantum
circuit.

• Four and six qubit inputs are taken for the Iris and Agri data sets, and
measurement is performed on a quantum circuit.

• To investigate performance, we deployed an MPS classifier on a real-
time quantum device (ibmqx4).

3 Matrix Product State

The matrix product state encodes the extent of entanglement in bond
dimensions. It is a method of a tensor network, where the tensors are
connected in a one-dimensional geometry. Figure 1 shows the MPS as a
one-dimensional array of tensors and a finite system of five sites. It pro-
vides an efficient approximation of realistic local Hamiltonians and can be
produced sequentially by tensors. In fact, any pure quantum state can be de-
scribed by substituting the coefficients—rank-N tensor by N-rank 3 tensors
and 2-rank by 2 tensors. In MPS, a pure quantum state |φ〉 is represented as

|φ〉 =
d∑

σ1,σ2,...σL

Tr[Mσ1
1 Mσ2

2 . . . MσL
L ]|σ1, σ2, . . . σL〉, (3.1)
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Figure 2: Mapping of input vector to order N tensor.

where Mσi
i are complex square matrices, d is dimension, σi represents the

indices ({0, 1} for qubits), and Tr() denotes trace of matrix (Bhatia & Kumar,
2018a).

3.1 Encoding of Classical Data. In quantum mechanics, the N indepen-
dent systems can be combine by performing tensor product operation on
their respective state vectors (Stoudenmire & Schwab, 2016; Huggins, Pa-
tel, Whaley, & Stoudenmire, 2019). Consider a feature map

φd(x) = φs1 (x1) ⊗ φs2 (x2) ⊗ . . . ⊗ φsN (xN ), (3.2)

where s j are indices run over the local dimension d such that d =
{s1, s2, . . . , sN}. Therefore, each state vector x j is mapped to a full feature
map φ(x) in a d-dimensional space. Figure 2 shows the tensor diagram of
full feature map φ(x).

Before illustrating the MPS tensor network, it is crucial to encode a clas-
sical machine learning data set into a quantum state. Consider a classical
data set S = {(xd, yd )}D

d=1 for binary classification, where yd ∈ {0, 1} are class
labels for N-dimensional input vectors such that xd ∈ IRN. We have normal-
ized the input vectors to lie in [−π, π]. Thus, the qubit φ is represented as

φd
n = cos(xd

n)|0〉 + sin(xd
n)|1〉, (3.3)

φd
n =

[
cos(xd

1 )

sin(xd
1 )

]
⊗

[
cos(xd

2 )

sin(xd
2 )

]
⊗ . . . ⊗

[
cos(xd

N )

sin(xd
N )

]
. (3.4)

We map the N-dimensional input vectors xd ∈ IRN to a product state on
N qubits by using the feature map, equation 3.2. The full quantum data
are represented as tensor product φd = ⊗N

n=1φ
d
n (Huggins et al., 2019; Grant

et al., 2018). Thus, the preparation of a quantum state is efficient, as it
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Figure 3: Matrix product state quantum classifier.

needs only single-qubit rotations to encode each segment of classical data
set n = {1, 2, . . . N} in the amplitude of a qubit. Overall, there is no rele-
vant cost for such encoding. Similar to a classical data set for binary clas-
sification, a quantum data set for binary classification is denoted as a set
Sq = {(φd, yd )}D

d=1, where yd ∈ {0, 1} are class labels for 2N-dimensional in-
put vectors such that φd ∈ C

2N
. It can be easily checked that the quantum

data as outputs of a quantum circuit are in a superposition state.

3.2 Quantum Circuit Classifier. We now discuss MPS quantum circuit
classifiers for classification of quantum data, which is made up of unitary
operations. We followed an iterative approach by keeping positive trace val-
ues from the N-qubit input space to output qubits. We apply unitary oper-
ations composed of single qubit rotations around the y-axis and a CNOT
gate to the input set and discard one of the qubits (unobserved) from each
unitary operation. Therefore, we split the qubit into two parts for the next
layer of the circuit. This process continues until the last qubit is left to be
measured. Note that at each stage of the circuit, we keep one of the qubits
resulting from one of the unitary operations of the earlier stage, and even-
tually unitary transformation occurs on two qubits from another subpart of
the circuit.

The unitary blocks in Figure 3 consist of an input data set with an an-
cilla qubit that is initialized to zero. It can be easily traced out. Using the
ancilla qubit, we can execute a large class of nonlinear operations. In Fig-
ure 3, circles denote inputs prepared in a product state, and triangles in-
dicate unobserved qubits. When all unitary operations interpreted in the
circuit have been executed, then one qubit is observed and used as the out-
put qubit. The measurement on a particular qubit is carried out by applying
Pauli operators in a particular direction. The output qubit determines the
predicted value of the input, that is, the class label values assigned. In order
to calculate the most likely state of the output qubit, the quantum circuit can
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be evaluated for a number of iterations considering the same input to de-
termine the probability distribution among the computational basis states.
The MPS quantum circuit for seven qubits is shown in Figure 3. It consists
of inputs represented by circles, unitary blocks {Ui}6

i=1, and a measurement
operator on the last qubit. Here, single-qubit rotations in the y-direction are
followed by a CNOT gate and discard a qubit for the next layer of the quan-
tum circuit.

In order to assess the quality of actual and predicted values of the data
set, we need to calculate the cost function to measure the difference between
actual and predicted values of the data set. It is given as

Jθ = 1
D

D∑
d=1

(Mθ (xd ) − yd )2, (3.5)

where xd and yd are the input and class labels, respectively, M is a qubit op-
erator, θ represents the set of parameters to use, and D is the total number
of data points. The equation calculates the average amount that the model’s
predictions differ from the actual values. The goal is to minimize the cost
function, which must be close to zero. Although there exist various proce-
dures to carry out optimization, we have employed the conjugate gradient
(CG) method optimize the large data sets. It is an iterative and effective
method to optimize the results, but it can break down over multiple itera-
tions when the function to be optimized is noisy. Alternatively, the stochas-
tic gradient descent method, which is resilient to noise, can be applied.

Different parameters are used to measure the performance of the MPS
quantum classifier, such as accuracy (ACC), sensitivity (Sens), specificity
(Spec), and Gini coefficient. ACC is computed to measure the correctness
of the classifier; Spec refers to the ability of the classifier to identify nega-
tive results; Sens defines the true positive rate (i.e., correctly identified by
the classifier); and the Gini coefficient determines the inequality in the dis-
tribution, which should be between 0 and 1, where N is the total number of
data points, TP is true positive, TN defines true negative, and FP and FN
represent false positive and false negative, respectively:

• Accuracy:

ACC = TP + TN
N

× 100 (3.6)

• Sensitivity:

Sens = TP
TP + FN

(3.7)
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Figure 4: Parameters of the IMD weather data set.

• Specificity:

Spec = TN
TN + FP

(3.8)

4 Model Development

Here, we present the preprocessing, encoding, and management of quan-
tum data that are implemented on a real-time quantum device ibmqx4, us-
ing open source software and the programming language Python 3.6.5 with
installed Qiskit (i.e., an open-source software development kit (SDK) for
working with the IBM Q quantum processors).

4.1 Data Collection and Preprocessing for the Study. First, we develop
the MPS-based model for classification. At the start, we collected the Iris
sample data sets from the UCI machine learning web portal. The data set
consists of 150 examples in three varieties of Iris (setosa, versicolor, vir-
ginica). We rescaled the input vectors to lie in [−π, π] and applied binary
classification to class labels. After the normalization process, we formed
pairwise combinations of samples (Iris1, Iris2, and Iris3) on the basis of
classes; for example, Iris1 consists of data belonging to class labels 1 and
2 (now encoded as 0 and 1). Iris2 and Iris3 consist of data belonging to class
labels 2, 3 and 1, 3, respectively. Figure 4 shows the parameters of the IMD
weather data set.

Climatic data from the Patiala station have been retrieved from India is
Meteorological Department (IMD) in Pune. The station is located at 30.33◦E
latitude and 76.38◦S longitude. The study area includes the Patiala sta-
tion, located in northern Punjab (India). The elevation is 351 m above sea
level. The daily meteorological data for Patiala during 2014, 2015, and 2016
were used. The data consist of the following parameters: maximum and
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Table 1: Statistical Parameters of Meteorological Variables and ETo of Patiala
Station.

Parameters Max Min Mean SD SK K

Tmin (◦C) 30.7 2.3 18.71 7.50 − 0.27 − 1.28
Tmax (◦C) 44.4 9.8 30.39 7.10 − 0.47 − 0.36
RH(%) 100 0 73.30 17.64 − 0.77 − 0.02
u2 (km h−1 day−1) 16 0 3.23 2.18 1.46 3.16
Is (h) 12.2 0 6.24 3.53 − 0.52 − 0.98
Rs (MJ m−2 day−2) 28.2 4.9 16.15 6.14 − 0.01 − 0.98
ETo (mm) 6 0 2.49 1.48 0.17 1.01

Table 2: Performance Comparison of MPS for Each Sample of the Agriculture
and Iris Data Sets.

ETo Categories Classes Samples

0 (0–1)→ LOW C1 Agri1 (C1 (0) and C2 (1))
1
2 (2–3)→ MEDIUM C2 Agri2 (C2 (0) and C3 (1))
3
4 (4–6)→ HIGH C3 Agri3 (C1 (0) and C3(1))
5
6

minimum air temperature (Tmax) (Tmin), relative humidity (RH), wind speed
(u2), solar radiation (Rs), sunshine hours (Is), evapotranspiration (ETo),
standard-deviation (SD), skewness (SK), and kurtosis (K). The statistical pa-
rameters of meteorological variables at Patiala are in Table 1.

In the agriculture data set, the ETo varies from 0 to 6. In order to per-
form binary classification, we divided the ETo into three categories: set {0,
1} comes under LOW, {2, 3} is MEDIUM, and {4, 5, 6} is categorized as HIGH,
as shown in Table 2. From this data set, we generated three binary classifi-
cation tasks: C1, C2, and C3. We rescaled the input vectors element-wise to
lie in [−π, π] and applied binary classification to the class labels.

After the normalization process, we formed a pairwise combination of
samples (Agri1, Agri2, and Agri3) on the basis of classes; for example, Agri1

consists of data belonging to class labels C1 and C2 (now encoded as 0 and
1). Similarly, Agri2 and Agri3 consist of data belonging to class labels C2, C3

and C1, C3, respectively. Furthermore, each sample is divided into training
and testing sets. The training set consists of 80% of the original data sets,
and the testing set consists of 20% of it. Also, the MPS quantum classifier is
applied to the training data set. The MPS quantum classifier is applied to the
data set for a number of iterations, considering the same input repeatedly.
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After achieving best accuracy, the trained model is applied to the testing
data set (unseen) and the results are analyzed.

4.2 Development Phases. After partitioning the full data set in the third
phase, the training and testing sets were mapped into a tensor network state
using equation 3.2. The input vectors are encoded into a quantum state for
classifying the classical data on a quantum computer using equation 2.3. Fi-
nally, we take the tensor product of each input quantum state to form com-
plete quantum data to use in a quantum circuit, using equation 3.4. Figure
5 shows the seven stages of our methodology for model development.

In the fifth stage, a qubit-efficient MPS quantum classifier is trained using
unitary parameters and qubit rotations in the chosen direction. Finally, one
or more qubits are measured using Pauli operators.

In the final stage, we determined the predicted value of the input, that
is, the class label values assigned for the training set after assigning it to the
quantum circuit. In order to calculate the most probable state of the output
qubit, we repeated the fifth stage for a number of iterations considering
the same input. Finally, we had classification results for each sample. The
experimental results are plotted in the next section for each sample.

4.3 Experimental Results: Iris Data Set. In this section, we test the abil-
ity of the MPS quantum classifier to classify the Iris data set. For the exper-
iment, we used qubit rotations in the y-direction to yield real values and
parameterized the unitary operations with the ancilla qubit. It is repre-
sented as a four-qubit input gate consisting of an ancilla qubit. It can be
traced out in order to execute nonlinear operations on the data set.

In order to analyze the performance of the MPS quantum classifier, we
divided the data set into three samples (Iris1, Iris2, and Iris3) on the basis of
the pairwise combination of class labels. Each sample consists of two-thirds
of the data set. We also split each sample into a training set and a testing test
with an 80:20 ratio to compute accuracy. We classified the Iris data set, us-
ing an MPS quantum classifier on the basis of accuracy and computed cost
during the training and testing periods. On executing the MPS quantum
classifier on each sample for classes 1 and 2, 2 and 3, and 1 and 3 of Iris data
set, we found an 85% accuracy rate while differentiating classes 1 and 2, an
80% accuracy rate for classes 2 and 3, and a 90% accuracy rate differentiat-
ing classes 1 and 3. Therefore, we verified that the results from the largest
values and cost with the lowest values provide the basis of higher model
efficiency.

We analyzed the output of the MPS classifier and compared it for dif-
ferent Iris samples on the basis of such parameters as binary classification
accuracy, cost, Spec, Sens, and Gini coefficient, as shown in Table 3. The
MPS quantum circuit gives results of 88.75% and 85% and a cost of 0.11 and
0.15 for Iris1 training and testing sets, respectively. Iris2 shows an accuracy
of 83.75% and 80% and a cost of 0.16 and 0.2 for training and testing sets.
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Figure 5: Model development phases for classification.

Iris3 results are slightly better than those of Iris1, with an accuracy of 95%
and 90% for training and testing sets. The MPS quantum classifier correctly
classified the Iris data set and achieved a cost function value of 0.05 and 0.1
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Table 3: Performance Comparison of MPS for Each Sample of the Iris Data Set.

Training Testing

Sample Cost ACC Spec Sens Gini Cost ACC Spec Sens Gini

Iris1 0.11 88.75 0.86 0.90 0.80 0.15 85 0.85 0.83 0.67
Iris2 0.16 83.75 0.82 0.84 0.80 0.2 80 0.71 1.0 0.50
Iris3 0.05 95 0.90 1.0 0.92 0.1 90 0.84 1.0 0.77

for the training and testing sets of the Iris3 sample, respectively (see equa-
tion 3.5).

We performed the experiments with quantum circuits of N = 4 qubits.
We have produced data sets consisting of 2500 quantum states for each
of the classes y ∈ {1, 2, 3}. We gave each quantum state as input into the
quantum computer where the MPS quantum classifier is implemented. We
considered four-qubit input gates, including an ancilla qubit set to |0〉. The
comparisons between the actual and predicted classification values in per-
centages for training and testing sets of Iris1 (sample1), Iris2 (sample2), and
Iris3 (sample3) are shown in Figure 6.

4.4 Experimental Results: Agri Data Set. In this section, we determine
the performance of the proposed model for the agriculture domain using
larger historical and streaming data sets. Each sample of the Agri data set
consists of statistical parameters, given in Table 1, formed by a pairwise
combination of classes. In order to test the ability of the MPS classifier, we
trained it with the training set as an input and repeated the process consid-
ering the same input. Further, the testing set is given to a quantum classifier.
The performance of the proposed model during the training and testing pe-
riods for each sample is given in Table 4.

Compared with each sample of the training data sets, the accuracy of
the testing data set of Agri1 is just slightly greater. It can be easily checked
that training accuracy of the Agri2 and Agri3 samples is marginally higher
than the testing samples, respectively. In the case of the training data set
of the Agri1 sample, the specificity is approximately 0.98, that is, the MPS
classifier identifies more negative results compared to the testing set’s 0.76.
Therefore, the true positive value of the training set is less than that of the
testing set for Agri1. The estimated ETo actual and predicted values (in %)
for the training and testing sets of Agri1 (Sample1), Agri2 (Sample2) and
Agri3 (Sample3) are plotted in Figure 7.

The main advantage of the MPS quantum classifier is that training can be
implemented with high efficiency. The mapping of classical data into MPS
form (i.e., a highly dimensional Hilbert space) is beneficial for generating
high-order correlations between classes. MPS’s bond dimension manages
the parameters of the machine learning model. It is easy to compute and
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Figure 6: Estimated IRISspecies actual and predicted values (%) for training (in
red) and testing (in blue) data sets of Iris1, Iris2, and Iris3.

Table 4: Performance Comparison of MPS for Each Sample of the Agri Data Set.

Training Testing

Sample Cost ACC Spec Sens Gini Cost ACC Spec Sens Gini

Agri1 0.20 79.03 0.98 0.72 0.52 0.19 80.65 0.76 0.83 0.53
Agri2 0.24 75.34 0.68 0.82 0.51 0.26 73.33 0.67 0.79 0.50
Agri3 0.21 78.73 0.73 0.89 0.61 0.22 77.04 0.77 0.75 0.53

can be selected adaptively. Usually the bond dimension exists between 10
and 10,000 or more quantum states. It follows that larger bond dimensions
result in higher accuracy. In fact, on selecting an extremely large bond di-
mension, the model can also result in overfitting. MPS quantum classifiers
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Figure 7: Estimated ETo Actual and predicted values (%) for the training (in
red) and testing (in blue) data sets of Agri1, Agri2, and Agri3.

have been used to avoid overfitting as well as underfitting, deal with cor-
rected predictors, and reduce the variance of prediction error. It performed
effectively and efficiently handled large data sets. We believe that it can be
adapted to many other machine learning tasks to scrutinize their power.
It showed great learning capability for Iris species and ETo estimations in
the Agri data set. Figure 8 describes the results of training and testing set
accuracy, cost, Spec, Sens, and Gini coefficient for each sample and shows
consistent accuracy of the MPS quantum classifier.

The similarity between actual and predicted values is expressed on the
basis of centered root-mean-square difference, correlation, and their varia-
tions in amplitude (i.e., standard deviation). We have used Taylor diagrams
to graphically outline the degree of correspondence among values (see Fig-
ure 9). It has been used to investigate the performance of models to study as-
pects of climatic environment. The colors indicate the actual and predicted
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Figure 8: Comparison of forecasting ETo and Iris species results with the MPS
model. (a) Cost. (b) ACC. (c) Spec. (d) Sens. (e) Gini.

values of different samples for the Iris and Agri data sets. Here, Iris1(actual)
and Iris1(predicted) depict the actual and predicted values of the training
and testing sets of the Iris data set, respectively.

5 Conclusion

In this letter, we have illustrated that a matrix product state quantum clas-
sifier can be used to classify quantum data efficiently. We have focused on
an MPS quantum circuit augmented with ancilla qubit that is implemented
on a quantum computer with the restrictions on of using only actual qubit
rotations. The key advantage of classification with an MPS quantum circuit
is that it can be executed efficiently with a small number of qubits. The MPS
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Figure 9: Representation of degree of correspondence between each sample
of Iris and Agri data sets using Taylor diagrams. (a) TrainingIris. (b) TestingIris.
(c) TrainingAgri. (d) TestingAgri.

quantum classifier has shown great learning capability for the Iris and Agri
data sets. We analyzed the different classification performance metrics for
each sample, and have shown the degree of correspondence among val-
ues. The deployment of an MPS quantum model to evaluate other machine
learning tasks is promising. In the future, we will investigate the perfor-
mance of other tensor networks for large, real-time quantum data.
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